Sanic框架中CORS配置问题的分析与解决
2025-05-12 22:12:15作者:宣利权Counsellor
Sanic是一个基于Python的异步Web框架,以其高性能和易用性著称。在使用Sanic开发Web应用时,跨域资源共享(CORS)是一个常见的需求。本文将深入分析Sanic官方文档中CORS配置存在的问题,并提供经过验证的解决方案。
问题背景
在Sanic 24.6.0版本中,按照官方文档配置CORS时,开发者会遇到路由中间件相关的异常。具体表现为当请求到达时,系统抛出AttributeError: 'types.SimpleNamespace' object has no attribute 'request_middleware'错误,这表明路由中间件处理出现了问题。
错误分析
通过调试发现,问题根源在于options.py文件中的app.router.reset()和app.router.finalize()调用。这两个操作会干扰Sanic的路由系统正常工作,导致路由中间件信息丢失。
解决方案
经过实践验证,可以简化CORS配置方案如下:
核心CORS处理模块
from sanic import Request, HTTPResponse
from typing import Iterable
def _add_cors_headers(request: Request, response: HTTPResponse, methods: str) -> None:
response.headers['Access-Control-Allow-Headers'] = "origin, content-type, accept, authorization, x-xsrf-token, x-request-id"
response.headers['Access-Control-Allow-Methods'] = methods
response.headers['Access-Control-Allow-Origin'] = request.headers.get('Origin') or '*'
def add_cors_headers(request: Request, response: HTTPResponse):
_add_cors_headers(request, response, request.app.ctx.uri_methods_mapping[request.route.uri])
OPTIONS请求处理模块
from collections import defaultdict
from typing import Dict
from sanic import empty, Request, HTTPResponse, Sanic
from sanic.router import Route
def _compile_routes_needing_options(routes: Dict[str, Route]) -> Dict[str, str]:
needs_options = defaultdict(list)
for route in routes:
if "OPTIONS" not in route.methods:
needs_options[route.uri].extend(route.methods)
return {uri: ",".join(methods) for uri, methods in dict(needs_options).items()}
async def options_handler(request: Request, *args, **kwargs) -> HTTPResponse:
return empty()
def setup_options(app: Sanic, _):
uri_methods_mapping = _compile_routes_needing_options(app.router.routes)
app.ctx.uri_methods_mapping = uri_methods_mapping
for uri, methods in uri_methods_mapping.items():
app.add_route(options_handler, uri, methods = ["OPTIONS"])
实现原理
- 路由分析:
_compile_routes_needing_options函数扫描所有路由,找出需要添加OPTIONS方法的路由 - 上下文存储:将路由与方法映射关系存储在应用上下文中,便于后续访问
- OPTIONS处理:为每个需要CORS的路由添加OPTIONS方法处理
- CORS头处理:在响应中添加必要的CORS头信息
注意事项
- 此方案适用于Sanic 24.6.0及以上版本
- 如果需要更复杂的OPTIONS处理逻辑,可以扩展
options_handler函数 - 确保在应用启动时正确注册这些中间件和路由
总结
通过简化CORS配置方案,避免了路由系统的干扰,同时保持了完整的CORS功能。这个方案经过实际项目验证,能够稳定处理跨域请求,为Sanic开发者提供了一个可靠的CORS实现参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30