Sanic框架中CORS配置问题的分析与解决
2025-05-12 06:52:16作者:宣利权Counsellor
Sanic是一个基于Python的异步Web框架,以其高性能和易用性著称。在使用Sanic开发Web应用时,跨域资源共享(CORS)是一个常见的需求。本文将深入分析Sanic官方文档中CORS配置存在的问题,并提供经过验证的解决方案。
问题背景
在Sanic 24.6.0版本中,按照官方文档配置CORS时,开发者会遇到路由中间件相关的异常。具体表现为当请求到达时,系统抛出AttributeError: 'types.SimpleNamespace' object has no attribute 'request_middleware'错误,这表明路由中间件处理出现了问题。
错误分析
通过调试发现,问题根源在于options.py文件中的app.router.reset()和app.router.finalize()调用。这两个操作会干扰Sanic的路由系统正常工作,导致路由中间件信息丢失。
解决方案
经过实践验证,可以简化CORS配置方案如下:
核心CORS处理模块
from sanic import Request, HTTPResponse
from typing import Iterable
def _add_cors_headers(request: Request, response: HTTPResponse, methods: str) -> None:
response.headers['Access-Control-Allow-Headers'] = "origin, content-type, accept, authorization, x-xsrf-token, x-request-id"
response.headers['Access-Control-Allow-Methods'] = methods
response.headers['Access-Control-Allow-Origin'] = request.headers.get('Origin') or '*'
def add_cors_headers(request: Request, response: HTTPResponse):
_add_cors_headers(request, response, request.app.ctx.uri_methods_mapping[request.route.uri])
OPTIONS请求处理模块
from collections import defaultdict
from typing import Dict
from sanic import empty, Request, HTTPResponse, Sanic
from sanic.router import Route
def _compile_routes_needing_options(routes: Dict[str, Route]) -> Dict[str, str]:
needs_options = defaultdict(list)
for route in routes:
if "OPTIONS" not in route.methods:
needs_options[route.uri].extend(route.methods)
return {uri: ",".join(methods) for uri, methods in dict(needs_options).items()}
async def options_handler(request: Request, *args, **kwargs) -> HTTPResponse:
return empty()
def setup_options(app: Sanic, _):
uri_methods_mapping = _compile_routes_needing_options(app.router.routes)
app.ctx.uri_methods_mapping = uri_methods_mapping
for uri, methods in uri_methods_mapping.items():
app.add_route(options_handler, uri, methods = ["OPTIONS"])
实现原理
- 路由分析:
_compile_routes_needing_options函数扫描所有路由,找出需要添加OPTIONS方法的路由 - 上下文存储:将路由与方法映射关系存储在应用上下文中,便于后续访问
- OPTIONS处理:为每个需要CORS的路由添加OPTIONS方法处理
- CORS头处理:在响应中添加必要的CORS头信息
注意事项
- 此方案适用于Sanic 24.6.0及以上版本
- 如果需要更复杂的OPTIONS处理逻辑,可以扩展
options_handler函数 - 确保在应用启动时正确注册这些中间件和路由
总结
通过简化CORS配置方案,避免了路由系统的干扰,同时保持了完整的CORS功能。这个方案经过实际项目验证,能够稳定处理跨域请求,为Sanic开发者提供了一个可靠的CORS实现参考。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
635
144
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
652
276
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
245
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
73
98
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.72 K