Foundry项目中的Invariant测试缓存问题解析
概述
在Solidity智能合约开发中,Foundry是一个广受欢迎的测试框架。近期,Foundry的forge test
命令在处理Invariant测试时被发现存在一个值得注意的缓存行为问题。当开发者修改测试配置后,之前失败的Invariant测试可能会被错误地重新执行,即使根据新的配置这些测试本应被排除。
问题现象
该问题具体表现为:当一个Invariant测试失败并被缓存后,如果开发者随后修改了测试目标配置(如targetSenders、targetContracts等),再次运行测试时,这些本应被新配置排除的失败测试仍会被报告为失败。只有清除缓存后重新运行测试,才能得到符合新配置的正确结果。
技术背景
Invariant测试是Foundry中的一种特殊测试类型,它通过随机生成交易序列来验证合约在长时间运行后仍能保持某些不变性质。Foundry会将失败的Invariant测试序列缓存起来,以便后续调试和复现问题。
问题根源
问题的核心在于Foundry目前仅持久化失败的调用序列,而没有同时保存测试配置信息。当测试重新编译或配置变更时,系统无法识别这些变更,导致继续使用旧的缓存结果。
解决方案探讨
从技术实现角度,可以考虑以下几种解决方案:
-
配置哈希比对:在缓存失败测试序列时,同时保存当前测试配置的哈希值。在重新运行测试时,先比对配置哈希,如果发现不一致则忽略缓存。
-
自动缓存清理:当检测到测试文件或配置发生变化时,自动清理相关缓存。
-
版本化缓存:为每个测试配置版本创建独立的缓存空间,确保不同配置的测试结果互不干扰。
实际影响
这个问题会对开发工作流产生以下影响:
- 开发者修改测试配置后可能无法立即看到预期效果
- 需要手动清除缓存才能获得正确结果
- 在持续集成环境中可能导致意外的测试失败
最佳实践建议
在问题修复前,建议开发者在以下情况下手动清除Foundry缓存:
- 修改了Invariant测试的目标配置
- 更改了测试合约的setup逻辑
- 发现测试结果与预期不符时
总结
Foundry作为强大的智能合约测试框架,其Invariant测试功能为合约安全性提供了重要保障。这个缓存问题虽然不影响测试本身的正确性,但会影响开发体验。理解这一问题的本质有助于开发者更高效地使用Foundry进行合约测试,同时也为框架的未来改进提供了方向。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









