SUMO-RL 开源项目教程
1. 项目介绍
SUMO-RL 是一个用于交通信号控制的强化学习(Reinforcement Learning, RL)环境。它提供了一个简单的接口,使得用户可以轻松地使用 SUMO(Simulation of Urban MObility)进行交通信号控制的强化学习实验。SUMO-RL 的目标是:
- 提供一个简单易用的接口,方便用户进行强化学习实验。
- 支持多智能体强化学习。
- 兼容 Gymnasium 和 PettingZoo 等流行的强化学习库。
- 允许用户轻松自定义状态和奖励定义。
2. 项目快速启动
2.1 安装 SUMO
首先,确保你已经安装了 SUMO。你可以通过以下命令在 Ubuntu 系统上安装 SUMO:
sudo add-apt-repository ppa:sumo/stable
sudo apt-get update
sudo apt-get install sumo sumo-tools sumo-doc
安装完成后,设置 SUMO_HOME 环境变量:
echo 'export SUMO_HOME="/usr/share/sumo"' >> ~/.bashrc
source ~/.bashrc
2.2 安装 SUMO-RL
你可以通过 pip 安装 SUMO-RL 的稳定版本:
pip install sumo-rl
或者,如果你想使用最新的未发布版本,可以通过以下命令从 GitHub 克隆并安装:
git clone https://github.com/LucasAlegre/sumo-rl
cd sumo-rl
pip install -e .
2.3 快速启动示例
以下是一个简单的示例,展示如何使用 SUMO-RL 进行单智能体强化学习实验:
import gymnasium as gym
import sumo_rl
# 创建环境
env = gym.make('sumo-rl-v0',
net_file='path_to_your_network.net.xml',
route_file='path_to_your_routefile.rou.xml',
out_csv_name='path_to_output.csv',
use_gui=True,
num_seconds=100000)
# 重置环境
obs, info = env.reset()
done = False
while not done:
# 选择随机动作
action = env.action_space.sample()
# 执行动作
next_obs, reward, terminated, truncated, info = env.step(action)
# 检查是否完成
done = terminated or truncated
3. 应用案例和最佳实践
3.1 单智能体强化学习
在单智能体场景中,SUMO-RL 可以用于优化单个交通信号灯的控制策略。通过定义不同的奖励函数和观察空间,可以训练模型以最小化交通拥堵或最大化交通流量。
3.2 多智能体强化学习
在多智能体场景中,SUMO-RL 支持多个交通信号灯的协同控制。每个信号灯可以作为一个独立的智能体,通过协作来优化整个交通网络的效率。
3.3 自定义奖励函数
SUMO-RL 允许用户自定义奖励函数。例如,你可以定义一个奖励函数来最大化车辆的平均速度,而不是最小化延迟。
def my_reward_fn(traffic_signal):
return traffic_signal.get_average_speed()
env = sumo_rl.SumoEnvironment(reward_fn=my_reward_fn)
4. 典型生态项目
4.1 Gymnasium
Gymnasium 是一个流行的强化学习库,SUMO-RL 与之兼容,使得用户可以轻松地将 SUMO-RL 集成到现有的强化学习实验中。
4.2 PettingZoo
PettingZoo 是一个多智能体强化学习库,SUMO-RL 支持 PettingZoo 的 API,使得用户可以轻松地进行多智能体强化学习实验。
4.3 Stable-Baselines3
Stable-Baselines3 是一个基于 PyTorch 的强化学习库,提供了多种强化学习算法的实现。SUMO-RL 可以与 Stable-Baselines3 结合使用,进行更复杂的强化学习实验。
通过这些生态项目的支持,SUMO-RL 可以广泛应用于交通信号控制的强化学习研究中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00