SUMO-RL 开源项目教程
1. 项目介绍
SUMO-RL 是一个用于交通信号控制的强化学习(Reinforcement Learning, RL)环境。它提供了一个简单的接口,使得用户可以轻松地使用 SUMO(Simulation of Urban MObility)进行交通信号控制的强化学习实验。SUMO-RL 的目标是:
- 提供一个简单易用的接口,方便用户进行强化学习实验。
- 支持多智能体强化学习。
- 兼容 Gymnasium 和 PettingZoo 等流行的强化学习库。
- 允许用户轻松自定义状态和奖励定义。
2. 项目快速启动
2.1 安装 SUMO
首先,确保你已经安装了 SUMO。你可以通过以下命令在 Ubuntu 系统上安装 SUMO:
sudo add-apt-repository ppa:sumo/stable
sudo apt-get update
sudo apt-get install sumo sumo-tools sumo-doc
安装完成后,设置 SUMO_HOME 环境变量:
echo 'export SUMO_HOME="/usr/share/sumo"' >> ~/.bashrc
source ~/.bashrc
2.2 安装 SUMO-RL
你可以通过 pip 安装 SUMO-RL 的稳定版本:
pip install sumo-rl
或者,如果你想使用最新的未发布版本,可以通过以下命令从 GitHub 克隆并安装:
git clone https://github.com/LucasAlegre/sumo-rl
cd sumo-rl
pip install -e .
2.3 快速启动示例
以下是一个简单的示例,展示如何使用 SUMO-RL 进行单智能体强化学习实验:
import gymnasium as gym
import sumo_rl
# 创建环境
env = gym.make('sumo-rl-v0',
net_file='path_to_your_network.net.xml',
route_file='path_to_your_routefile.rou.xml',
out_csv_name='path_to_output.csv',
use_gui=True,
num_seconds=100000)
# 重置环境
obs, info = env.reset()
done = False
while not done:
# 选择随机动作
action = env.action_space.sample()
# 执行动作
next_obs, reward, terminated, truncated, info = env.step(action)
# 检查是否完成
done = terminated or truncated
3. 应用案例和最佳实践
3.1 单智能体强化学习
在单智能体场景中,SUMO-RL 可以用于优化单个交通信号灯的控制策略。通过定义不同的奖励函数和观察空间,可以训练模型以最小化交通拥堵或最大化交通流量。
3.2 多智能体强化学习
在多智能体场景中,SUMO-RL 支持多个交通信号灯的协同控制。每个信号灯可以作为一个独立的智能体,通过协作来优化整个交通网络的效率。
3.3 自定义奖励函数
SUMO-RL 允许用户自定义奖励函数。例如,你可以定义一个奖励函数来最大化车辆的平均速度,而不是最小化延迟。
def my_reward_fn(traffic_signal):
return traffic_signal.get_average_speed()
env = sumo_rl.SumoEnvironment(reward_fn=my_reward_fn)
4. 典型生态项目
4.1 Gymnasium
Gymnasium 是一个流行的强化学习库,SUMO-RL 与之兼容,使得用户可以轻松地将 SUMO-RL 集成到现有的强化学习实验中。
4.2 PettingZoo
PettingZoo 是一个多智能体强化学习库,SUMO-RL 支持 PettingZoo 的 API,使得用户可以轻松地进行多智能体强化学习实验。
4.3 Stable-Baselines3
Stable-Baselines3 是一个基于 PyTorch 的强化学习库,提供了多种强化学习算法的实现。SUMO-RL 可以与 Stable-Baselines3 结合使用,进行更复杂的强化学习实验。
通过这些生态项目的支持,SUMO-RL 可以广泛应用于交通信号控制的强化学习研究中。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00