首页
/ SUMO-RL 开源项目教程

SUMO-RL 开源项目教程

2024-09-13 20:07:06作者:鲍丁臣Ursa

1. 项目介绍

SUMO-RL 是一个用于交通信号控制的强化学习(Reinforcement Learning, RL)环境。它提供了一个简单的接口,使得用户可以轻松地使用 SUMO(Simulation of Urban MObility)进行交通信号控制的强化学习实验。SUMO-RL 的目标是:

  • 提供一个简单易用的接口,方便用户进行强化学习实验。
  • 支持多智能体强化学习。
  • 兼容 Gymnasium 和 PettingZoo 等流行的强化学习库。
  • 允许用户轻松自定义状态和奖励定义。

2. 项目快速启动

2.1 安装 SUMO

首先,确保你已经安装了 SUMO。你可以通过以下命令在 Ubuntu 系统上安装 SUMO:

sudo add-apt-repository ppa:sumo/stable
sudo apt-get update
sudo apt-get install sumo sumo-tools sumo-doc

安装完成后,设置 SUMO_HOME 环境变量:

echo 'export SUMO_HOME="/usr/share/sumo"' >> ~/.bashrc
source ~/.bashrc

2.2 安装 SUMO-RL

你可以通过 pip 安装 SUMO-RL 的稳定版本:

pip install sumo-rl

或者,如果你想使用最新的未发布版本,可以通过以下命令从 GitHub 克隆并安装:

git clone https://github.com/LucasAlegre/sumo-rl
cd sumo-rl
pip install -e .

2.3 快速启动示例

以下是一个简单的示例,展示如何使用 SUMO-RL 进行单智能体强化学习实验:

import gymnasium as gym
import sumo_rl

# 创建环境
env = gym.make('sumo-rl-v0', 
               net_file='path_to_your_network.net.xml', 
               route_file='path_to_your_routefile.rou.xml', 
               out_csv_name='path_to_output.csv', 
               use_gui=True, 
               num_seconds=100000)

# 重置环境
obs, info = env.reset()
done = False

while not done:
    # 选择随机动作
    action = env.action_space.sample()
    
    # 执行动作
    next_obs, reward, terminated, truncated, info = env.step(action)
    
    # 检查是否完成
    done = terminated or truncated

3. 应用案例和最佳实践

3.1 单智能体强化学习

在单智能体场景中,SUMO-RL 可以用于优化单个交通信号灯的控制策略。通过定义不同的奖励函数和观察空间,可以训练模型以最小化交通拥堵或最大化交通流量。

3.2 多智能体强化学习

在多智能体场景中,SUMO-RL 支持多个交通信号灯的协同控制。每个信号灯可以作为一个独立的智能体,通过协作来优化整个交通网络的效率。

3.3 自定义奖励函数

SUMO-RL 允许用户自定义奖励函数。例如,你可以定义一个奖励函数来最大化车辆的平均速度,而不是最小化延迟。

def my_reward_fn(traffic_signal):
    return traffic_signal.get_average_speed()

env = sumo_rl.SumoEnvironment(reward_fn=my_reward_fn)

4. 典型生态项目

4.1 Gymnasium

Gymnasium 是一个流行的强化学习库,SUMO-RL 与之兼容,使得用户可以轻松地将 SUMO-RL 集成到现有的强化学习实验中。

4.2 PettingZoo

PettingZoo 是一个多智能体强化学习库,SUMO-RL 支持 PettingZoo 的 API,使得用户可以轻松地进行多智能体强化学习实验。

4.3 Stable-Baselines3

Stable-Baselines3 是一个基于 PyTorch 的强化学习库,提供了多种强化学习算法的实现。SUMO-RL 可以与 Stable-Baselines3 结合使用,进行更复杂的强化学习实验。

通过这些生态项目的支持,SUMO-RL 可以广泛应用于交通信号控制的强化学习研究中。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8