探索未来网络控制的智能解决方案——Networked Multi-agent RL (NMARL)
2024-05-20 17:33:47作者:昌雅子Ethen
在这个数字化时代,网络系统的复杂性和动态性日益增强,对高效协同控制的需求也与日俱增。NMARL是一个强大的开源项目,它提供了一套用于网络系统控制的最新多智能体强化学习算法。该项目不仅考虑了每个智能体有限的观察和通信范围,还引入了不同类型的合作策略,实现了对环境的智能适应。
项目介绍
NMARL是基于Actor-Critic架构的一系列先进算法实现,分为两个主要类别:IA2C(非通信策略)和MA2C(通信策略)。IA2C允许智能体仅利用邻居信息进行决策,而MA2C则通过特定的通信协议增强了智能体之间的协作。项目中包含了多个知名算法如PolicyInferring、FingerPrint、ConsensusUpdate以及DIAL、CommNet和NeurComm等。此外,它还提供了多种适用场景,如自适应交通信号控制和合作式自适应巡航控制,以检验和验证算法的性能。
项目技术分析
NMARL项目采用Python3和TensorFlow1.12.0构建,支持SUMO仿真工具进行实时场景模拟。其设计了一个灵活的配置系统,允许用户在不同的DNN结构和算法之间切换,以适应各种网络环境。训练过程可通过Tensorboard监控,并且项目已经预设了可再现研究结果的实验设置。
应用场景
- ATSC Grid:在合成交通网格中实现自适应交通信号控制。
- ATSC Monaco:在实际的摩纳哥城市交通网络中应用自适应信号控制。
- CACC Catch-up:通过合作式自适应巡航控制来追赶领先的车辆。
- CACC Slow-down:让车辆跟随领导者减速行驶。
项目特点
- 高度可定制化:用户可以调整算法和网络结构,适应不同任务需求。
- 可视化评估:通过SUMO GUI展示智能体行为,以直观理解模型效果。
- 稳定性与可复现性:提供详细的实验设定,确保结果一致性,同时提供PyTorch版本的实现,满足更多开发者的习惯。
如果你正在寻找一个强大且灵活的框架,用于解决网络系统中的协同控制问题,那么NMARL无疑是你的不二之选。借助这个开源项目,你可以深入探索多智能体强化学习的强大潜力,推动网络系统控制领域的创新和发展。
引用论文:
@inproceedings{
chu2020multiagent,
title={Multi-agent Reinforcement Learning for Networked System Control},
author={Tianshu Chu and Sandeep Chinchali and Sachin Katti},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://openreview.net/forum?id=Syx7A3NFvH}
}
现在就加入NMARL的行列,开启你的智能控制之旅吧!
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
1