MagicOnion中实现StreamingHub方法参数与返回值的日志记录
2025-06-16 21:02:01作者:舒璇辛Bertina
前言
在使用MagicOnion开发实时通信应用时,开发者经常需要记录StreamingHub方法的输入参数和返回值,这对于调试和监控系统行为非常重要。本文将详细介绍如何在MagicOnion的StreamingHub中实现方法调用的完整日志记录。
基础日志记录方案
最简单的日志记录方式是通过构造函数注入ILogger,然后在每个方法内部手动记录参数:
public class GamingHub : StreamingHubBase<IGamingHub, IGamingHubReceiver>, IGamingHub
{
private readonly ILogger<GamingHub> _logger;
public GamingHub(ILogger<GamingHub> logger)
{
_logger = logger;
}
public async ValueTask<Player[]> JoinAsync(string roomName, string userName, Vector3 position, Quaternion rotation)
{
_logger.LogInformation("JoinAsync called with roomName:{roomName}, userName:{userName}", roomName, userName);
// 方法实现...
}
}
这种方式虽然直接,但需要在每个方法中重复编写日志代码,维护成本较高。
使用过滤器实现统一日志记录
MagicOnion提供了过滤器(Filter)机制,可以在方法调用前后插入自定义逻辑,这是实现统一日志记录的理想方式。
创建日志记录过滤器
public class LoggingStreamingHubFilter : IStreamingHubFilter
{
private readonly ILogger _logger;
public LoggingStreamingHubFilter(ILogger<LoggingStreamingHubFilter> logger)
{
_logger = logger;
}
public async ValueTask Invoke(StreamingHubContext context, Func<StreamingHubContext, ValueTask> next)
{
// 记录方法调用前日志(参数)
_logger.LogInformation("调用方法 {MethodName} 参数: {Parameters}",
context.Path,
JsonSerializer.Serialize(context.ServiceContext.CallContext.RequestHeaders));
try
{
await next(context);
// 记录方法调用后日志(返回值)
if (context.Result.HasValue)
{
_logger.LogInformation("方法 {MethodName} 返回: {Result}",
context.Path,
JsonSerializer.Serialize(context.Result.Value));
}
}
catch (Exception ex)
{
_logger.LogError(ex, "方法 {MethodName} 执行出错", context.Path);
throw;
}
}
}
注册过滤器
在服务配置中添加过滤器:
var builder = MagicOnionHost.CreateDefaultBuilder()
.UseMagicOnion(
new MagicOnionOptions
{
StreamingHubFilters = new[] { new LoggingStreamingHubFilter(logger) }
}
);
参数序列化注意事项
在记录复杂类型参数时,需要注意:
- 确保类型可序列化,特别是自定义类型
- 对于包含循环引用的对象,需要配置序列化选项
- 敏感信息应考虑脱敏处理
可以自定义序列化选项:
var options = new JsonSerializerOptions
{
WriteIndented = true,
ReferenceHandler = ReferenceHandler.IgnoreCycles
};
JsonSerializer.Serialize(value, options);
性能优化建议
日志记录虽然重要,但也需要考虑性能影响:
- 在高频调用的方法上考虑使用Debug级别日志
- 对大对象记录时只记录关键属性
- 考虑使用条件日志记录
if (_logger.IsEnabled(LogLevel.Debug))
{
_logger.LogDebug("详细日志信息...");
}
总结
通过MagicOnion的过滤器机制,我们可以优雅地实现StreamingHub方法的统一日志记录,无需在每个方法中重复编写日志代码。这种方法不仅提高了开发效率,还保证了日志记录的一致性。在实际应用中,开发者可以根据具体需求调整日志级别和内容,平衡调试需求和系统性能。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
315
2.74 K
deepin linux kernel
C
24
7
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
Ascend Extension for PyTorch
Python
155
178
暂无简介
Dart
606
136
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
240
85
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K
React Native鸿蒙化仓库
JavaScript
238
310