Supervision项目扩展:支持Transformers分割模型检测功能
2025-05-07 06:32:22作者:尤辰城Agatha
概述
Supervision作为计算机视觉领域的重要工具库,近期对其检测功能进行了重要扩展。原本仅支持Transformers目标检测模型的from_transformers方法,现已升级为同时支持分割模型,这为开发者处理图像分割任务提供了更便捷的解决方案。
技术背景
在计算机视觉领域,目标检测和图像分割是两项核心任务。目标检测主要识别图像中的物体位置和类别,而图像分割则更进一步,需要精确到像素级别的分类。Transformers框架提供了多种预训练模型,包括DETR等优秀架构,能够同时完成检测和分割任务。
功能实现细节
核心API设计
新功能通过扩展Detections.from_transformers方法实现,开发者现在可以:
- 加载Transformers提供的分割模型(如DETR)
- 处理输入图像并获取模型输出
- 将分割结果转换为Supervision的标准检测格式
- 使用Supervision提供的标注工具可视化结果
关键技术点
实现过程中解决了几个关键问题:
- 掩码到边界框转换:使用
mask_to_xyxy工具函数将分割掩码转换为边界框坐标 - 数据类型处理:确保numpy数组的数据类型正确,避免标注异常
- 结果后处理:正确处理Transformers模型输出的分割结果格式
使用示例
开发者可以按照以下流程使用新功能:
# 初始化模型和处理器
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
# 处理输入图像
image = Image.open("example.jpg")
inputs = processor(images=image, return_tensors="pt")
# 获取模型输出
with torch.no_grad():
outputs = model(**inputs)
# 转换结果为Supervision格式
detections = sv.Detections.from_transformers(results)
# 可视化结果
mask_annotator = sv.MaskAnnotator()
annotated_image = mask.annotate(scene=image, detections=detections)
未来展望
虽然当前已支持基本分割功能,但仍有扩展空间:
- 实例分割支持:处理更复杂的实例级分割任务
- 全景分割支持:统一语义分割和实例分割结果
- 性能优化:针对大规模分割任务进行效率提升
总结
Supervision对Transformers分割模型的支持扩展,显著提升了其在计算机视觉任务中的实用性。这一改进不仅简化了开发流程,还为更复杂的视觉分析任务奠定了基础。随着后续功能的不断完善,Supervision有望成为更全面的计算机视觉工具库。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.42 K
Ascend Extension for PyTorch
Python
264
298
暂无简介
Dart
710
169
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
179
65
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
413
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
422
130