TorchTitan项目中FSDP2混合精度训练的正确使用方法
2025-06-19 01:36:49作者:齐添朝
混合精度训练基础概念
混合精度训练是深度学习领域中一种重要的优化技术,它通过在不同计算阶段使用不同的数值精度来平衡计算效率和数值稳定性。在PyTorch生态系统中,FSDP2(Fully Sharded Data Parallel)作为分布式训练的重要工具,提供了对混合精度训练的支持。
FSDP2混合精度配置方案
在TorchTitan项目中,开发者提出了两种可行的混合精度配置方案:
方案一:FP32初始化后转换
这种方案首先将模型初始化为FP32精度,确保优化器状态也是FP32格式,然后在FSDP2配置中指定前向传播和反向传播使用BF16精度:
model = AutoModel.from_pretrained(...)
model.to(torch.float32) # 确保模型初始为FP32
mp_policy = MixedPrecisionPolicy(
param_dtype=torch.bfloat16, # 前向/反向计算使用BF16
reduce_dtype=torch.float32, # 梯度规约使用FP32
)
# 应用FSDP2封装
fully_shard(model, mp_policy=mp_policy)
这种方案的优点是:
- 优化器状态保持FP32精度,数值稳定性好
- 计算过程使用BF16,提高计算效率
- 内存占用相对平衡
方案二:BF16初始化后转换
对于超大模型,开发者提出了另一种优化内存使用的方案:
model = AutoModel.from_pretrained(..., device_map="cpu", bf16=True)
# 应用FSDP2封装后再转换为FP32
fully_shard(model)
model.to(torch.float32)
opt = Adam(model.parameters()) # 基于FP32模型初始化优化器
这种方案的优势在于:
- 初始加载时使用BF16,减少CPU内存占用
- FSDP2的延迟初始化机制会正确处理精度转换
- 最终模型参数仍为FP32,保持优化稳定性
元设备初始化与检查点加载
对于超大规模模型,开发者还探讨了使用元设备初始化的最佳实践:
# 使用元设备初始化模型
with init_empty_weights():
model = AutoModelForCausalLM.from_config(config)
# 应用FSDP2封装
fully_shard(model)
# 将模型转移到GPU并清空
model.to_empty(device='cuda')
# 加载检查点后转换为FP32
model.to(torch.float32)
opt = Adam(model.parameters())
通信阶段的精度处理
在实际训练过程中,FSDP2的参数收集(All-Gather)操作会按照MixedPrecisionPolicy中指定的param_dtype进行。例如,当配置为BF16时,即使模型参数本身是FP32,通信阶段也会自动转换为BF16进行传输,这有助于减少通信带宽需求。
实践建议
- 对于常规规模模型,推荐使用FP32初始化方案,稳定性更好
- 超大模型可考虑BF16初始化或元设备方案,减少内存压力
- 通信密集型场景可适当降低param_dtype精度
- 梯度规约建议保持FP32以确保数值稳定性
- 优化器状态通常应保持FP32以获得最佳训练效果
通过合理配置FSDP2的混合精度策略,开发者可以在保持模型训练稳定性的同时,显著提升训练效率和扩展模型规模能力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137