Torchtitan项目中的张量并行与序列并行技术解析
引言
在深度学习模型训练中,并行计算技术是提升训练效率的关键手段。Torchtitan作为PyTorch生态中的重要项目,在并行训练方面提供了多种创新性解决方案。本文将深入探讨Torchtitan中张量并行(TP)与序列并行(SP)的技术实现及其关系。
张量并行与序列并行的技术本质
张量并行(TP)是一种将模型权重在多个设备间分割的并行策略。在Llama等Transformer架构模型中,TP主要应用于注意力层和前馈网络层的权重分割。每个设备只保存部分权重,通过协同计算完成完整的前向和后向传播。
序列并行(SP)则是一种针对激活值的并行策略,主要处理层归一化(LayerNorm)和Dropout层的输入输出。与TP不同,SP不分割模型参数,而是将输入序列在序列维度上进行分割。
两种并行策略的关系演进
从技术发展角度看,序列并行实际上是张量并行的补充和增强。单独使用序列并行并不能带来显著的性能提升,它必须与张量并行结合使用才能发挥最大效益。因此,Torchtitan项目选择将这两种并行策略统一归类为"张量并行",这反映了它们在实现上的紧密耦合关系。
这种命名方式也避免了与另一种称为"上下文并行"(Context Parallelism)的技术混淆。上下文并行是另一种针对序列维度的并行方法,需要独立的网格维度,与TP/SP有本质区别。
实际应用配置
在Torchtitan中,用户可以通过简单的命令行参数配置不同的并行策略组合:
- 一维张量并行/序列并行:
NGPU=4 ./run_llama_train.sh --training.data_parallel_degree 1 --training.tensor_parallel_degree 4
- 二维张量并行/序列并行结合FSDP:
NGPU=4 ./run_llama_train.sh --training.tensor_parallel_degree 2
FP8混合精度支持
Torchtitan还支持FP8混合精度训练,可以与各种并行策略组合使用:
- 一维TP结合FP8全收集:
NGPU=4 ./run_llama_train.sh --training.enable_float8_linear --training.data_parallel_degree 1 --training.tensor_parallel_degree 4
- 二维FSDP2+TP结合FP8全收集:
NGPU=4 ./run_llama_train.sh --training.enable_float8_linear --training.enable_fsdp_float8_all_gather --training.precompute_float8_dynamic_scale_for_fsdp --training.tensor_parallel_degree 2
技术展望
Torchtitan团队正在进一步完善相关文档和技术实现,包括:
- FSDP结合FP8全收集的技术说明
- 三维并行结合FP8全收集的实现
- FP8 API的稳定化和标准化
这些进展将进一步增强Torchtitan在大规模模型训练中的性能和易用性。
总结
Torchtitan项目通过将张量并行和序列并行统一为"张量并行"的概念,简化了复杂并行策略的配置和使用。这种设计既反映了两种技术的内在联系,又避免了与其他并行策略的混淆。随着FP8等新特性的加入,Torchtitan正在成为大规模模型训练的重要工具选择。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00