LLM-Guard项目中PromptInjection检测机制的技术解析
2025-07-10 12:28:30作者:齐添朝
在LLM-Guard项目中,一个看似简单的用户输入"my name is arjun"被标记为PromptInjection(提示注入)的情况引起了技术讨论。这种现象背后反映了LLM安全防护系统中几个关键的技术实现细节。
检测机制的工作原理
LLM-Guard的安全扫描采用多层次的检测机制。当用户输入一个提示词时,系统会依次通过多个扫描器进行检查,包括但不限于:
- 匿名化处理(Anonymize)
- 提示注入检测(PromptInjection)
- 代码检测(Code)
- 敏感信息检测(Secrets)等
在这个案例中,虽然用户显式禁用了多个扫描器,但系统仍然执行了匿名化和提示注入检测。
问题根源分析
导致"my name is arjun"被标记为PromptInjection的根本原因在于扫描器的执行顺序。系统默认配置中,匿名化扫描器(Anonymize)会先于提示注入检测执行。当"arjun"被识别为人名并进行匿名化处理后,原始提示被修改为包含"[REDACTED_PERSON]"标记的内容,这种模式触发了提示注入检测的规则。
技术解决方案
项目维护者提出了两个有效的解决方案:
-
调整扫描器顺序:将Anonymize扫描器置于检测流程的末端,确保其他扫描器能够基于原始输入进行分析。这种调整可以避免因匿名化处理导致的误判。
-
使用专用扫描端点:项目中提供的/scan/prompt端点专门用于分析而不执行任何修改操作,适合需要获取原始分析结果的场景。
最佳实践建议
对于LLM安全防护系统的实施,建议考虑以下实践:
- 明确各扫描器的执行顺序对检测结果的影响
- 根据实际需求选择适当的API端点
- 对于包含个人信息的输入,考虑分阶段处理策略
- 定期审查和调整扫描器配置以适应新的威胁模式
这个案例展示了LLM安全防护系统中扫描器执行顺序的重要性,也提醒开发者需要深入理解安全工具的工作原理才能有效配置和使用它们。通过合理的配置调整,可以在保护隐私和防止提示注入攻击之间取得平衡。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1