FlexWorld项目环境配置与模型部署全指南
项目概述
FlexWorld是一个集成了多种先进AI技术的综合性项目,包含3D重建、视频生成和超分辨率等核心功能模块。本文将详细介绍如何从零开始搭建FlexWorld的开发环境,并部署所需的预训练模型。
环境配置
基础环境搭建
首先需要创建一个独立的Python虚拟环境,推荐使用conda进行管理:
conda create -n FlexWorld python=3.11
conda activate FlexWorld
CUDA工具包安装
由于项目依赖GPU加速,需要安装对应版本的CUDA工具包:
conda install -c "nvidia/label/cuda-12.1.0" cuda-toolkit
PyTorch框架安装
安装与CUDA 12.1兼容的PyTorch 2.4.1版本:
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121
关键组件安装
-
xformers优化库:
pip3 install xformers==0.0.28 --index-url https://download.pytorch.org/whl/cu121 -
PyTorch3D库:
conda install https://anaconda.org/pytorch3d/pytorch3d/0.7.8/download/linux-64/pytorch3d-0.7.8-py311_cu121_pyt241.tar.bz2 -
项目依赖:
pip install -r requirements.txt
视频生成模块
视频生成功能需要单独安装依赖:
cd ./tools/CogVideo
pip install -r requirements.txt
cd ../..
超分辨率模块
安装超分辨率相关依赖时需要注意一个关键修改:
pip install basicsr
重要提示:使用超分辨率功能时,需要手动修改basicsr.data包中的degradation.py文件,将torchvision.transforms.functional_tensor替换为torchvision.transforms.functional。
预训练模型部署
3D重建模型
-
创建模型存储目录:
mkdir ./tools/dust3r/checkpoints -
下载DUSt3R和MASt3R模型:
wget https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth -P ./tools/dust3r/checkpoints wget https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth -P ./tools/dust3r/checkpoints
视频生成模型
-
安装Hugging Face工具:
pip install -U huggingface_hub -
下载CogVideoX-SAT模型:
huggingface-cli download GSAI-ML/FlexWorld --local-dir ./tools/CogVideo/checkpoints
超分辨率模型
-
创建权重目录:
mkdir ./tools/Real_ESRGAN/weights -
下载Real-ESRGAN模型:
wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P ./tools/Real_ESRGAN/weights
常见问题排查
-
CUDA版本不匹配:确保安装的PyTorch版本与CUDA 12.1兼容,版本号必须严格对应。
-
xformers安装失败:可以尝试从源码编译安装,或检查CUDA环境变量是否设置正确。
-
模型下载中断:大型模型下载时建议使用稳定的网络连接,必要时可使用断点续传工具。
-
超分辨率模块报错:务必确认已按要求修改了
basicsr.data.degradation.py文件。
结语
通过以上步骤,您应该已经成功搭建了FlexWorld项目的完整开发环境。各模块的预训练模型也已部署就位。接下来可以开始探索项目提供的各项功能,包括3D场景重建、高质量视频生成和图像超分辨率等先进AI能力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00