LOVR物理引擎中凸包碰撞体的中心点偏移问题解析
2025-07-02 06:13:24作者:江焘钦
问题背景
在LOVR物理引擎中,当使用newConvexCollider创建凸包碰撞体时,如果输入的顶点坐标的质心不在原点位置,会出现一个潜在的问题。具体表现为:创建的碰撞体实际上会保留输入顶点的原始偏移量,但在查询顶点坐标时返回的却是相对于质心的局部坐标,这可能导致碰撞检测和视觉渲染之间的不一致。
问题复现
假设我们创建一个立方体的凸包碰撞体,但将所有顶点在x轴上偏移5个单位:
world = lovr.physics.newWorld()
points = { -- 立方体角点
{-1, -1, 1}, { 1, -1, 1}, { 1, -1, -1}, {-1, -1, -1},
{-1, 1, 1}, { 1, 1, 1}, { 1, 1, -1}, {-1, 1, -1},
}
for i, point in ipairs(points) do
point[1] = point[1] + 5 -- 为每个点添加水平偏移
end
convex = world:newConvexCollider(vec3(), points)
此时进行射线检测会发现:
- 在原点(0,0,0)处检测不到碰撞
- 在偏移位置(5,0,0)处才能检测到碰撞
但查询顶点坐标时返回的却是未偏移的原始坐标:
print('1st point:', convex:getShape():getPoint(1)) -- 输出: -1 1 1
print('offset:', convex:getShape():getOffset()) -- 输出: 0 0 0
技术原理分析
这个问题源于LOVR物理引擎内部对凸包碰撞体的处理方式。当创建凸包碰撞体时,引擎会计算输入顶点的质心(中心点),但在存储顶点数据时没有保留这个质心偏移信息。这导致:
- 碰撞检测使用的是包含偏移的实际顶点位置
- 但查询顶点坐标时返回的是相对于质心的局部坐标
- 形状偏移(getOffset)返回的是零向量
这种不一致性使得在将碰撞体与可视化网格对齐时会出现困难,特别是当需要精确匹配物理表现和视觉效果时。
解决方案
LOVR开发团队已经修复了这个问题,主要改动包括:
- 在
ConvexShape:getPoint方法中自动添加质心偏移量 - 确保返回的顶点坐标反映实际位置而非局部坐标
- 文档中明确说明凸包形状会保留输入点的偏移
对于开发者而言,现在可以:
- 直接使用原始顶点数据创建碰撞体
- 通过
getPoint获取准确的顶点世界坐标 - 使用
getCenterOfMass获取质心位置进行必要的调整
实际应用建议
在使用凸包碰撞体时,建议开发者:
- 保持顶点数据的原始坐标,不要手动调整质心
- 如需调整碰撞体位置,使用
Collider:setPose而非修改顶点数据 - 在渲染匹配的网格时,考虑质心偏移量
- 对于复杂形状,可以使用
Collider:setCenterOfMass调整质心位置
总结
LOVR物理引擎对凸包碰撞体的处理已经优化,现在能够正确处理顶点偏移问题。开发者可以更直观地使用凸包碰撞体,无需担心顶点坐标与碰撞检测之间的不一致性。这一改进使得物理模拟与视觉渲染的同步更加简单可靠。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137