海思平台交叉编译Paddle-Lite时OpenBLAS构建问题解析
2025-05-31 00:42:28作者:邵娇湘
问题背景
在基于海思处理器的嵌入式开发环境中,开发者经常需要将深度学习框架Paddle-Lite交叉编译到ARM架构平台。在Ubuntu 18.04系统上使用海思交叉编译器进行armv7架构的编译时,可能会遇到OpenBLAS构建失败的问题。
典型错误表现
编译过程中会出现以下关键错误信息:
./getarch: cannot execute binary file: Exec format error- 表明生成的二进制文件无法在当前主机系统上执行error: "you must define ARMV5, ARMV6, ARMV7 or ARMV8"- OpenBLAS构建时缺少必要的架构定义
问题根源分析
这个问题主要由两个因素导致:
- 架构不匹配:OpenBLAS构建过程中生成的
getarch工具是ARM架构的可执行文件,无法在x86主机上直接运行 - 编译配置缺失:OpenBLAS构建系统未能正确识别目标ARM架构版本
解决方案
经过实践验证,最有效的解决方案是:
启用TINY_PUBLISH编译选项:通过设置WITH_TINY_PUBLISH=ON可以规避这个问题。这个选项会简化发布内容,跳过某些可能导致问题的构建步骤。
技术细节
- getarch工具的作用:这是OpenBLAS构建过程中用于检测系统架构的工具,通常在构建主机上运行以确定目标平台特性
- 交叉编译的特殊性:在交叉编译环境下,构建系统生成的目标平台工具无法直接在主机上运行
- ARM架构定义:OpenBLAS需要明确的ARM架构版本定义(ARMV5/6/7/8)来生成针对特定指令集的优化代码
实践建议
对于嵌入式深度学习框架的交叉编译,建议:
- 优先考虑使用框架提供的预编译选项(如TINY_PUBLISH)
- 确保交叉编译工具链完整配置
- 对于第三方库的构建问题,可考虑使用预编译版本替代源码构建
- 仔细检查构建日志,定位最初出现问题的环节
总结
在海思平台交叉编译Paddle-Lite时遇到的OpenBLAS构建问题,反映了嵌入式AI开发中常见的交叉编译挑战。通过合理配置编译选项和深入理解构建过程,可以有效解决这类问题,为嵌入式设备部署深度学习模型铺平道路。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
499
3.66 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
482
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
310
134
React Native鸿蒙化仓库
JavaScript
297
347
暂无简介
Dart
745
180
Ascend Extension for PyTorch
Python
302
343
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882