Drake项目中FixedOffsetFrame浅拷贝问题的技术分析
问题概述
在RobotLocomotion/drake项目的多体动力学模块中,发现了一个关于FixedOffsetFrame类浅拷贝(ShallowClone)实现的问题。该问题会导致在进行浅拷贝操作时,模型实例(model instance)信息未能正确保留,而是错误地继承了父框架(parent frame)的模型实例。
技术背景
FixedOffsetFrame是Drake多体系统中表示固定偏移框架的类,它描述了一个相对于父框架具有固定位置和姿态的参考系。在多体系统中,每个框架都属于特定的模型实例,这是系统组织和管理的重要组成部分。
浅拷贝(ShallowClone)操作在多体系统中用于创建框架的轻量级副本,通常用于在不同计算场景下重用框架定义。正确的浅拷贝实现应该保留原始对象的所有关键属性。
问题细节
当前FixedOffsetFrame::DoShallowClone()的实现如下:
template <typename T>
std::unique_ptr<Frame<T>> FixedOffsetFrame<T>::DoShallowClone() const {
return std::make_unique<FixedOffsetFrame<T>>(this->name(), parent_frame_,
X_PF_);
}
这个实现存在以下问题:
- 构造函数调用中缺少了模型实例参数
- 导致新创建的框架会继承父框架的模型实例
- 这与原始框架的实际模型实例可能不一致
类似的问题也存在于CloneToScalar()方法中,该方法同样基于ShallowClone的实现模型。
影响范围
这个问题在Python绑定中的AddFrame()方法中已经导致了实际错误。具体表现为:
- 当添加的框架模型实例与其父框架不同时
- 返回的浅拷贝框架会错误地位于父框架的模型实例中
- 破坏了系统预期的模型实例组织结构
特别是在处理关节框架时(如issue #22649中提到的),新添加的关节框架总是位于关节的模型实例中,即使这与关节父框架Jp的模型实例不同。
解决方案建议
修复方案相对直接,需要在浅拷贝实现中显式传递模型实例信息:
template <typename T>
std::unique_ptr<Frame<T>> FixedOffsetFrame<T>::DoShallowClone() const {
return std::make_unique<FixedOffsetFrame<T>>(this->name(), parent_frame_,
X_PF_, this->model_instance());
}
同样的修改也应应用于CloneToScalar()方法,确保所有拷贝操作都能正确保留模型实例信息。
总结
这个问题的发现和修复对于保证Drake多体系统中框架属性的正确传递至关重要。模型实例是多体系统组织的重要概念,确保其在各种操作(包括拷贝)中的一致性是系统可靠性的基础。开发人员在使用FixedOffsetFrame及相关功能时,应当注意检查模型实例的传递是否正确,特别是在进行框架拷贝或转换的场景下。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









