QwenLM/Qwen3项目中vLLM运行Qwen2.5-32B-Int4模型生成异常问题分析
2025-05-11 17:32:21作者:柏廷章Berta
在QwenLM/Qwen3项目中使用vLLM框架运行Qwen2.5-32B-Instruct-GPTQ-Int4量化模型时,部分用户遇到了模型输出异常的问题。具体表现为模型仅生成感叹号"!!!!!"序列,而非预期的合理回复。本文将从技术角度深入分析该问题的成因、影响范围及解决方案。
问题现象与重现条件
当用户通过vLLM框架加载Qwen2.5-32B-Instruct-GPTQ-Int4模型时,在特定条件下会出现输出异常:
- 使用较旧版本的vLLM(如0.5.1)时问题较为明显
- 输入序列较短(token数少于50)时更容易触发
- 使用默认系统提示词时几乎必然出现
- 相同模型通过HuggingFace原生接口推理则表现正常
根本原因分析
经过技术团队深入调查,发现问题源于vLLM框架中GPTQ量化实现的特定处理逻辑:
-
双路径执行机制:vLLM的GPTQ实现针对不同长度的输入序列采用了两种计算路径
- 短序列(<50 token)使用"快速路径"(fast path)
- 长序列使用"重构路径"(reconstruct path,即先反量化再矩阵乘)
-
数值稳定性问题:在快速路径下,特定输入(特别是默认系统提示词)会导致数值计算不稳定,这与底层使用的exllama_v2实现方式有关
-
实现差异:虽然auto_gptq同样基于exllama_v2实现,但未出现相同问题,表明vLLM的特定实现存在额外因素影响
解决方案与变通方法
目前确认有效的解决方案包括以下几种:
1. 升级vLLM版本
建议升级至vLLM 0.6.4.post1或更高版本,新版框架可能已包含相关修复
2. 使用GPTQ-Marlin后端
对于Ampere架构及更新的GPU显卡,可以切换到gptq_marlin后端,该实现不受此问题影响
3. 修改源码阈值
技术用户可修改vLLM源码中的关键参数:
- 定位到量化计算的分支判断逻辑
- 将短序列阈值从50调整为0,强制所有序列使用重构路径
- 注意:这可能影响短序列的推理速度
4. 输入序列调整(临时方案)
在业务代码中添加特定处理:
if len(messages) <= 1:
messages.extend([
{"role":"user","content":"你好"},
{"role":"assistant","content":"!!..."} # 添加足够长的占位回复
])
此方法通过人为延长输入序列,强制系统使用重构路径
技术建议与最佳实践
对于生产环境部署Qwen2.5-32B-Int4模型的用户,建议采取以下策略:
- 版本控制:保持vLLM框架为最新稳定版本
- 后端选择:优先考虑gptq_marlin后端(若硬件支持)
- 监控机制:实现输出质量检查,自动识别异常生成
- 量化方案评估:对于关键应用,可考虑使用更高精度的量化版本(如Int8)
未来改进方向
Qwen技术团队正与vLLM维护者合作,从以下方面进行改进:
- 优化快速路径的数值稳定性
- 提供更灵活的后端选择机制
- 完善量化模型部署文档和最佳实践指南
该问题的解决将进一步提升Qwen系列大模型在量化状态下的推理可靠性和用户体验。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0136AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
232
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
113
78

暂无简介
Dart
534
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
61

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
648