YOLOv9项目中的detect.py执行错误分析与解决方案
问题背景
在使用YOLOv9目标检测框架进行视频检测时,用户在执行detect.py脚本时遇到了一个关键错误。这个错误发生在非极大值抑制(NMS)处理阶段,提示"list对象没有device属性",导致检测流程中断。
错误现象分析
当用户运行以下命令时:
python detect.py --source test.mp4 --weights yolov9-e.pt --imgsz 640 --conf-thres 0.25 --iou-thres 0.1
系统抛出错误:
AttributeError: 'list' object has no attribute 'device'
错误发生在non_max_suppression函数中,当它尝试访问预测结果的device属性时失败。这表明模型返回的结果格式与预期不符。
技术原理
在YOLOv9的目标检测流程中,模型推理后会返回两个值:
- 预测结果(prediction)
- 训练辅助输出(train_out)
原始代码中只接收了第一个返回值,而忽略了第二个返回值。这种设计在PyTorch模型中很常见,主输出用于推理,辅助输出可能包含训练时需要的额外信息。
解决方案
修改detect.py脚本中的模型调用部分,正确处理模型返回的两个值。具体修改如下:
原始代码:
pred = model(im, augment=augment, visualize=visualize)
修改为:
pred, _ = model(im, augment=augment, visualize=visualize)
这个修改确保我们只获取模型的主输出(pred),而忽略辅助输出(用_表示)。
深入理解
-
模型输出结构:YOLOv9模型设计为在训练和推理时返回不同输出。在推理时,第二个返回值通常为空或不重要,但在代码实现上仍需正确处理返回值结构。
-
设备属性问题:PyTorch张量都有device属性,指示它们所在的设备(CPU/GPU)。当只接收部分返回值时,可能导致类型不匹配,从而引发属性错误。
-
兼容性考虑:这种修改保持了与YOLO系列其他版本的一致性,确保代码在不同YOLO变体间的可移植性。
最佳实践建议
-
在使用PyTorch模型时,始终检查模型的返回结构,可以通过打印type()或直接查看模型定义来确认。
-
对于复杂的模型输出,使用变量名明确接收各个返回值,而不是使用_忽略,可以提高代码可读性。
-
在修改类似检测脚本时,建议先在小规模测试数据上验证,确认无误后再处理实际数据。
总结
这个问题的解决不仅修复了YOLOv9的检测流程,也展示了理解模型输出结构的重要性。在深度学习项目开发中,正确处理模型返回值的维度和类型是避免类似错误的关键。通过这个案例,开发者可以更好地理解PyTorch模型的工作机制和YOLO系列检测框架的实现细节。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00