首页
/ 探索未知,hotwax——以Frida Stalker驱动的二进制模糊测试框架

探索未知,hotwax——以Frida Stalker驱动的二进制模糊测试框架

2024-06-01 02:20:48作者:庞队千Virginia

在这个数字时代,软件安全至关重要,而模糊测试(fuzz testing)是一种被广泛用于发现软件漏洞的有效手段。今天,我们向您推荐一个创新项目——hotwax,它是一个基于Frida Stalker的覆盖率引导的二进制模糊测试工具,即使在没有预先编译的条件也能实现强大的动态覆盖跟踪。

项目简介

hotwax并非传统的模糊测试工具,而是通过动态插入机器指令来实时监控和记录程序执行路径的覆盖率。得益于Frida的强大功能,hotwax能够提供一种闭箱测试解决方案,适用于那些无法进行预编译或不便于修改源代码的场景。它的工作方式是,在运行时寻找基本块的终止点,并在此处插入跟踪代码,进而与模糊测试引擎(如AFL)交互,报告覆盖率信息。

技术分析

hotwax的核心是利用Frida Stalker库的C API,这是一种动态代码插桩技术,能够在运行时观察并改变程序的行为。它可以在基本块的边界动态插入机器码,这些插入的代码负责与模糊测试器通信,传递覆盖信息。这种巧妙的方法使得hotwax能在不改变目标二进制文件的情况下实现覆盖率指导的模糊测试。

应用场景

  • 闭源软件测试 - 当你不能访问或修改目标应用程序的源代码时,hotwax可以帮助你进行安全评估。
  • 第三方库检测 - 对于那些集成到你的系统中的外部库,hotwax可以自动进行仪器化处理,无需额外工作。
  • 快速原型验证 - 需要快速测试新思路或概念验证时,hotwax提供了易于使用的接口和示例,可以帮助你快速上手。

项目特点

  1. 动态仪器化 - hotwax能够在运行时动态插入跟踪代码,无需预先编译或修改目标程序。
  2. 兼容性强 - 支持多种操作系统和架构,适配各种二进制文件。
  3. 无缝集成AFL - 利用AFL成熟且高效的模糊测试算法,提高测试效率和深度。
  4. 可扩展性 - 用户可以通过修改target_X.c文件,轻松适应新的测试目标。

使用指南

要开始使用hotwax,首先确保安装了frida-gum-devkit和AFL,然后构建hotwax并创建测试用例目录。放置初始输入文件后,你可以直接使用AFL启动模糊测试。对于自定义软件,只需调整target_X.c并添加相关测试用例。

不仅如此,hotwax还提供了一个基准对比版本,使你可以在传统AFL编译器插件方法和hotwax动态插桩之间进行比较。

不要错过这个强大的工具,无论你是安全研究人员还是软件开发者,hotwax都能为你的软件安全保驾护航。立即加入我们,探索hotwax带来的无限可能性!

立即尝试hotwax


请注意: 这个项目已不再维护,请查看AFL++ LibAFL,获取最新和最全的模糊测试资源。

Hotwax Logo

许可: 此项目使用了Apache 2.0许可下的AFL代码和wxWindows Library Licence, Version 3.1许可下的Frida代码,所有@meme的原创代码采用Unlicense授权。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
608
115
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
77
Ffit-framework
面向全场景的 Java 企业级插件化编程框架,支持聚散部署和共享内存,以一切皆可替换为核心理念,旨在为用户提供一种灵活的服务开发范式。
Java
113
13
yolo-onnx-javayolo-onnx-java
Java开发视觉智能识别项目 纯java 调用 yolo onnx 模型 AI 视频 识别 支持 yolov5 yolov8 yolov7 yolov9 yolov10,yolov11,paddle ,obb,seg ,detection,包含 预处理 和 后处理 。java 目标检测 目标识别,可集成 rtsp rtmp,车牌识别,人脸识别,跌倒识别,打架识别,车牌识别,人脸识别 等
Java
9
0
cjoycjoy
a fast,lightweight and joy web framework
Cangjie
10
2
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25