Disco Diffusion 本地运行指南
2024-09-25 21:26:10作者:鲍丁臣Ursa
1. 项目介绍
Disco Diffusion 是一个基于深度学习的图像生成工具,能够通过文本提示生成高质量的图像和视频。该项目旨在帮助用户在本地环境中运行 Disco Diffusion,而不是依赖于 Google Colab。通过本地运行,用户可以更好地控制生成过程,并且可以在没有网络连接的情况下使用。
2. 项目快速启动
2.1 环境准备
2.1.1 系统要求
- Windows 10 或 11
- Nvidia GPU,至少 8GB VRAM(推荐 12GB 以上)
2.1.2 安装 WSL2
- 打开 Windows PowerShell 并以管理员身份运行。
- 输入以下命令安装 WSL2:
wsl --install - 重启计算机。
2.1.3 安装 Anaconda
- 打开 Ubuntu 应用。
- 下载并安装 Anaconda:
mkdir Downloads cd Downloads wget https://repo.anaconda.com/archive/Anaconda3-2021.11-Linux-x86_64.sh bash Anaconda3-2021.11-Linux-x86_64.sh - 按照屏幕提示完成安装。
2.1.4 创建并激活 Conda 环境
- 创建环境:
conda create -n pytorch_110 - 激活环境:
conda activate pytorch_110
2.1.5 安装依赖
- 安装 PyTorch 和其他依赖:
conda install pytorch==1.10 torchvision torchaudio cudatoolkit==11.1 -c pytorch -c conda-forge conda install jupyter pandas requests matplotlib conda install opencv -c conda-forge
2.2 运行 Disco Diffusion
2.2.1 下载项目
- 在 Ubuntu 终端中输入:
explorer.exe - 在浏览器中访问 Disco Diffusion 本地项目,下载 ZIP 文件并解压。
2.2.2 启动 Jupyter Notebook
- 在 Ubuntu 终端中运行:
jupyter notebook - 复制生成的 URL 并在 Windows 浏览器中打开。
2.2.3 运行 Notebook
- 导航到解压后的文件夹,打开
Disco_Diffusion_v5_Turbo_[w_3D_animation]_local.ipynb。 - 逐个运行单元格,根据需要修改设置。
3. 应用案例和最佳实践
3.1 生成静态图像
- 通过修改
text_prompts参数,生成不同风格的静态图像。
3.2 生成动画视频
- 使用
3D animation模式,生成动态视频。
3.3 批量生成
- 使用
batch mode,通过设置多个queue文件,一次性生成多个视频。
4. 典型生态项目
4.1 PyTorch
- 深度学习框架,用于构建和训练神经网络模型。
4.2 Anaconda
- 用于管理 Python 环境和包的工具。
4.3 Jupyter Notebook
- 交互式编程环境,支持 Python 和其他编程语言。
通过以上步骤,您可以在本地环境中成功运行 Disco Diffusion,并生成高质量的图像和视频。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
218
88
暂无简介
Dart
720
174
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
334
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
435
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19