在nnUNet项目中正确导出和使用.pth模型文件的方法
2025-06-01 22:57:57作者:牧宁李
模型导出与使用中的常见问题
在使用nnUNet进行医学图像分割时,许多开发者会遇到模型导出和使用的问题。特别是当尝试将训练好的模型保存为.pth文件并在其他环境中使用时,经常会遇到输入维度不匹配的错误。
正确的模型导出方法
在nnUNet框架中,正确的模型导出流程应该遵循以下步骤:
- 首先初始化预测器(nnUNetPredictor)
- 从训练好的模型文件夹加载参数
- 获取网络模型实例
- 加载模型参数
- 保存整个模型结构
predictor = nnUNetPredictor(
tile_step_size=0.5,
use_gaussian=True,
use_mirroring=True,
perform_everything_on_device=True,
device=torch.device('cuda', 0),
verbose=False,
verbose_preprocessing=False,
allow_tqdm=True
)
predictor.initialize_from_trained_model_folder(
join(nnUNet_results, 'Dataset089_data/nnUNetTrainer__nnUNetPlans__3d_fullres'),
use_folds=(0,),
checkpoint_name='checkpoint_final.pth',
)
model = predictor.network
param = predictor.list_of_parameters[0]
model.load_state_dict(param)
torch.save(model, '/path/to/save/model.pth')
模型加载与使用的正确方式
当加载保存的.pth模型文件进行推理时,需要特别注意输入数据的维度。nnUNet模型通常期望5D输入张量,格式为:
[batch_size, channels, depth, height, width]
常见的错误是忘记添加通道维度,导致维度不匹配。正确的使用方式应该是:
model = torch.load('model.pth', weights_only=False)
model.eval()
# 正确的输入维度
data = torch.rand((1, 1, 64, 192, 160)) # [batch, channel, depth, height, width]
output = model(data)
为什么会出现维度错误
在原始问题中出现的错误信息"expected input[1, 320, 16, 12, 10] to have 640 channels"表明模型期望的输入通道数与实际提供的不同。这是因为:
- nnUNet内部使用复杂的编码器-解码器结构
- 在模型的不同阶段会改变特征图的通道数
- 输入层通常只需要1个通道(灰度医学图像)
- 中间层会根据网络设计自动扩展通道数
最佳实践建议
- 始终检查模型的输入要求,可以通过打印模型结构或查看配置文件
- 使用与训练时相同的预处理流程
- 在导出模型前,先验证模型在原始环境中的推理功能
- 考虑同时保存模型的配置信息,便于后续使用
- 对于nnUNet,建议使用框架提供的标准预测接口,而不是直接操作模型
通过遵循这些指导原则,可以避免大多数与模型导出和使用相关的维度问题,确保医学图像分割任务的顺利进行。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322