TinyVector 开源项目教程
2024-08-31 04:45:03作者:申梦珏Efrain
项目介绍
TinyVector 是一个基于 SQLite 和 PyTorch 构建的小型最近邻嵌入数据库。它旨在为小型到中型数据集提供快速的向量查询速度,并且易于定制和扩展。TinyVector 是开源的,采用 MIT 许可证,适用于简单的应用场景,如文档搜索和网站商店搜索。
项目快速启动
安装依赖
首先,确保你已经安装了 Python 和 Rust。然后,克隆项目仓库并安装所需的 Python 包:
git clone https://github.com/m1guelpf/tinyvector.git
cd tinyvector
pip install -r requirements.txt
启动服务器
运行以下命令启动 TinyVector 服务器:
python -m server
使用示例
以下是一个简单的使用示例,展示了如何插入和查询向量:
from tinyvector import TinyVector
# 初始化数据库
db = TinyVector('example.db')
# 插入向量
db.insert([1.0, 2.0, 3.0])
db.insert([4.0, 5.0, 6.0])
# 查询最近邻
nearest = db.query([1.5, 2.5, 3.5])
print(nearest)
应用案例和最佳实践
文档搜索
TinyVector 非常适合用于文档搜索。你可以将文档的嵌入向量存储在 TinyVector 中,并使用查询向量来检索最相关的文档。
# 假设你已经生成了文档的嵌入向量
document_embeddings = [
[0.1, 0.2, 0.3],
[0.4, 0.5, 0.6],
# ...
]
# 插入文档嵌入向量
for embedding in document_embeddings:
db.insert(embedding)
# 查询最相关的文档
query_embedding = [0.15, 0.25, 0.35]
nearest_document = db.query(query_embedding)
print(nearest_document)
网站商店搜索
对于网站商店搜索,你可以将商品的嵌入向量存储在 TinyVector 中,并使用查询向量来检索最相关的商品。
# 假设你已经生成了商品的嵌入向量
product_embeddings = [
[0.1, 0.2, 0.3],
[0.4, 0.5, 0.6],
# ...
]
# 插入商品嵌入向量
for embedding in product_embeddings:
db.insert(embedding)
# 查询最相关的商品
query_embedding = [0.15, 0.25, 0.35]
nearest_product = db.query(query_embedding)
print(nearest_product)
典型生态项目
集成模型
TinyVector 计划支持各种嵌入模型,如 SBert、Hugging Face 模型、OpenAI、Cohere 等。这将使得用户可以直接在服务器上生成向量,而无需自己提供向量。
Python/JS 客户端
TinyVector 将提供全面的 Python 和 JavaScript 包,以便于与 TinyVector 进行集成。
# Python 客户端示例
from tinyvector_client import TinyVectorClient
client = TinyVectorClient('http://localhost:5000')
nearest = client.query([1.5, 2.5, 3.5])
print(nearest)
// JavaScript 客户端示例
const TinyVectorClient = require('tinyvector-client');
const client = new TinyVectorClient('http://localhost:5000');
client.query([1.5, 2.5, 3.5]).then(nearest => {
console.log(nearest);
});
通过这些生态项目,TinyVector 可以更好地与其他工具和框架集成,提供更强大的功能和更好的用户体验。
登录后查看全文
热门项目推荐
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- KKimi-K2-InstructKimi-K2-Instruct是月之暗面推出的尖端混合专家语言模型,拥有1万亿总参数和320亿激活参数,专为智能代理任务优化。基于创新的MuonClip优化器训练,模型在知识推理、代码生成和工具调用场景表现卓越,支持128K长上下文处理。作为即用型指令模型,它提供开箱即用的对话能力与自动化工具调用功能,无需复杂配置即可集成到现有系统。模型采用MLA注意力机制和SwiGLU激活函数,在vLLM等主流推理引擎上高效运行,特别适合需要快速响应的智能助手应用。开发者可通过兼容OpenAI/Anthropic的API轻松调用,或基于开源权重进行深度定制。【此简介由AI生成】Python00
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript043GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。04note-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。TSX01chatgpt-on-wechat
基于大模型搭建的聊天机器人,同时支持 微信公众号、企业微信应用、飞书、钉钉 等接入,可选择GPT3.5/GPT-4o/GPT-o1/ DeepSeek/Claude/文心一言/讯飞星火/通义千问/ Gemini/GLM-4/Claude/Kimi/LinkAI,能处理文本、语音和图片,访问操作系统和互联网,支持基于自有知识库进行定制企业智能客服。Python015
热门内容推荐
1 freeCodeCamp英语课程填空题提示缺失问题分析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp课程中屏幕放大器知识点优化分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp音乐播放器项目中的函数调用问题解析7 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp论坛排行榜项目中的错误日志规范要求
最新内容推荐
左手Annotators,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手controlnet-openpose-sdxl-1.0,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手ERNIE-4.5-VL-424B-A47B-Paddle,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手m3e-base,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手SDXL-Lightning,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手wav2vec2-base-960h,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手nsfw_image_detection,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手XTTS-v2,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手whisper-large-v3,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手flux-ip-adapter,右手GPT-4:企业AI战略的“开源”与“闭源”之辩
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
97
155

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
112
253

React Native鸿蒙化仓库
C++
138
222

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
658
441

轻量级、语义化、对开发者友好的 golang 时间处理库
Go
8
2

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
301
1.03 K

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
17
33

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
514
43

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
702
97