YOLOv7-PyTorch 使用教程
2024-08-08 19:13:08作者:凤尚柏Louis
1. 项目目录结构及介绍
项目目录结构如下:
.
├── README.md # 项目说明文件
├── data # 存放数据集相关配置和预处理脚本
│ ├── coco.yaml # COCO数据集配置文件示例
│ └── hyp # 超参数设置
│ ├── scratch.yaml # 从头训练的超参数
│ ├── p5.yaml # 针对YOLOv7的小模型参数
│ └── p6.yaml # 针对YOLOv7的大模型参数
├── model # 模型定义目录
│ ├── yolov7.py # YOLOv7模型代码
│ ├── yolov7-tiny.py # YOLOv7 Tiny模型代码
│ └── ... # 其他模型变种
├── scripts # 各种运行脚本
│ ├── train.py # 训练脚本
│ ├── test.py # 测试脚本
│ ├── export.py # 导出ONNX或TensorRT模型的脚本
│ └── ... # 其他辅助脚本
└── ... # 其他相关文件和目录
关键文件解释:
data目录包含了数据集相关的配置和超参数。model目录存储了YOLOv7系列模型的PyTorch实现。scripts目录提供了训练、测试以及模型转换的一系列脚本。
2. 项目的启动文件介绍
2.1 训练脚本 (train.py)
训练脚本通过指定的数据集路径、模型配置(.yaml 文件)、权重文件等参数来进行模型训练。
例如,如果你要训练一个从头开始的YOLOv7模型,可以运行以下命令:
python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7-custom.yaml --weights '' --name yolov7-custom --hyp data/hyp/scratch/custom.yaml
2.2 测试脚本 (test.py)
测试脚本用于评估模型在特定数据集上的性能,支持设置批大小、置信阈值和IoU阈值。
例如,进行COCO数据集上YOLOv7模型的验证集测试:
python test.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.65 --device 0 --weights yolov7.pt --name yolov7_640_val
2.3 模型导出脚本 (export.py)
此脚本可以将训练好的模型导出为ONNX或者TensorRT引擎,方便于部署到生产环境。
例如,将YOLOv7Tiny模型导出为ONNX并生成TensorRT引擎:
--onnx=yolov7-tiny.onnx --saveEngine=yolov7-tiny-nms.trt trt --fp16
3. 项目的配置文件介绍
配置文件主要位于data目录下的.yaml文件。它们定义了训练和测试时的数据加载、图像尺寸、类别数、锚框大小等关键参数。
3.1 数据集配置文件(如 coco.yaml)
数据集配置文件通常包括如下字段:
names: 类别名称列表。train: 训练集的路径。val: 验证集的路径。test: 测试集的路径。nc: 分类数量。size: 输入图像尺寸。batch_size: 批处理大小。
3.2 超参数文件(如 hyp/scratch.yaml, hyp/p5.yaml)
这些文件定义了训练过程中的超参数,例如学习率策略、损失函数权重、正负样本比例等。不同的模型变体可能需要不同的超参数配置,例如对于微调或从零开始训练。
3.3 模型配置文件(如 cfg/training/yolov7-custom.yaml)
模型配置文件指定了网络架构的具体细节,比如层数、卷积核大小等。这通常涉及到模型的宽度、深度和训练策略等信息。
以上就是YOLOv7-PyTorch项目的概览及关键文件的解释,希望对您理解和使用该项目有所帮助。祝您编码愉快!
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
265
2.54 K
deepin linux kernel
C
24
6
Ascend Extension for PyTorch
Python
98
126
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
150
暂无简介
Dart
555
124
React Native鸿蒙化仓库
JavaScript
221
301
仓颉编译器源码及 cjdb 调试工具。
C++
117
93
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
603
仓颉编程语言测试用例。
Cangjie
34
84
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.83 K