YOLOv7-PyTorch 使用教程
2024-08-08 19:13:08作者:凤尚柏Louis
1. 项目目录结构及介绍
项目目录结构如下:
.
├── README.md # 项目说明文件
├── data # 存放数据集相关配置和预处理脚本
│ ├── coco.yaml # COCO数据集配置文件示例
│ └── hyp # 超参数设置
│ ├── scratch.yaml # 从头训练的超参数
│ ├── p5.yaml # 针对YOLOv7的小模型参数
│ └── p6.yaml # 针对YOLOv7的大模型参数
├── model # 模型定义目录
│ ├── yolov7.py # YOLOv7模型代码
│ ├── yolov7-tiny.py # YOLOv7 Tiny模型代码
│ └── ... # 其他模型变种
├── scripts # 各种运行脚本
│ ├── train.py # 训练脚本
│ ├── test.py # 测试脚本
│ ├── export.py # 导出ONNX或TensorRT模型的脚本
│ └── ... # 其他辅助脚本
└── ... # 其他相关文件和目录
关键文件解释:
data目录包含了数据集相关的配置和超参数。model目录存储了YOLOv7系列模型的PyTorch实现。scripts目录提供了训练、测试以及模型转换的一系列脚本。
2. 项目的启动文件介绍
2.1 训练脚本 (train.py)
训练脚本通过指定的数据集路径、模型配置(.yaml 文件)、权重文件等参数来进行模型训练。
例如,如果你要训练一个从头开始的YOLOv7模型,可以运行以下命令:
python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7-custom.yaml --weights '' --name yolov7-custom --hyp data/hyp/scratch/custom.yaml
2.2 测试脚本 (test.py)
测试脚本用于评估模型在特定数据集上的性能,支持设置批大小、置信阈值和IoU阈值。
例如,进行COCO数据集上YOLOv7模型的验证集测试:
python test.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.65 --device 0 --weights yolov7.pt --name yolov7_640_val
2.3 模型导出脚本 (export.py)
此脚本可以将训练好的模型导出为ONNX或者TensorRT引擎,方便于部署到生产环境。
例如,将YOLOv7Tiny模型导出为ONNX并生成TensorRT引擎:
--onnx=yolov7-tiny.onnx --saveEngine=yolov7-tiny-nms.trt trt --fp16
3. 项目的配置文件介绍
配置文件主要位于data目录下的.yaml文件。它们定义了训练和测试时的数据加载、图像尺寸、类别数、锚框大小等关键参数。
3.1 数据集配置文件(如 coco.yaml)
数据集配置文件通常包括如下字段:
names: 类别名称列表。train: 训练集的路径。val: 验证集的路径。test: 测试集的路径。nc: 分类数量。size: 输入图像尺寸。batch_size: 批处理大小。
3.2 超参数文件(如 hyp/scratch.yaml, hyp/p5.yaml)
这些文件定义了训练过程中的超参数,例如学习率策略、损失函数权重、正负样本比例等。不同的模型变体可能需要不同的超参数配置,例如对于微调或从零开始训练。
3.3 模型配置文件(如 cfg/training/yolov7-custom.yaml)
模型配置文件指定了网络架构的具体细节,比如层数、卷积核大小等。这通常涉及到模型的宽度、深度和训练策略等信息。
以上就是YOLOv7-PyTorch项目的概览及关键文件的解释,希望对您理解和使用该项目有所帮助。祝您编码愉快!
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.24 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258