YOLOv7-PyTorch 使用教程
2024-08-08 19:13:08作者:凤尚柏Louis
1. 项目目录结构及介绍
项目目录结构如下:
.
├── README.md # 项目说明文件
├── data # 存放数据集相关配置和预处理脚本
│ ├── coco.yaml # COCO数据集配置文件示例
│ └── hyp # 超参数设置
│ ├── scratch.yaml # 从头训练的超参数
│ ├── p5.yaml # 针对YOLOv7的小模型参数
│ └── p6.yaml # 针对YOLOv7的大模型参数
├── model # 模型定义目录
│ ├── yolov7.py # YOLOv7模型代码
│ ├── yolov7-tiny.py # YOLOv7 Tiny模型代码
│ └── ... # 其他模型变种
├── scripts # 各种运行脚本
│ ├── train.py # 训练脚本
│ ├── test.py # 测试脚本
│ ├── export.py # 导出ONNX或TensorRT模型的脚本
│ └── ... # 其他辅助脚本
└── ... # 其他相关文件和目录
关键文件解释:
data目录包含了数据集相关的配置和超参数。model目录存储了YOLOv7系列模型的PyTorch实现。scripts目录提供了训练、测试以及模型转换的一系列脚本。
2. 项目的启动文件介绍
2.1 训练脚本 (train.py)
训练脚本通过指定的数据集路径、模型配置(.yaml 文件)、权重文件等参数来进行模型训练。
例如,如果你要训练一个从头开始的YOLOv7模型,可以运行以下命令:
python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7-custom.yaml --weights '' --name yolov7-custom --hyp data/hyp/scratch/custom.yaml
2.2 测试脚本 (test.py)
测试脚本用于评估模型在特定数据集上的性能,支持设置批大小、置信阈值和IoU阈值。
例如,进行COCO数据集上YOLOv7模型的验证集测试:
python test.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.65 --device 0 --weights yolov7.pt --name yolov7_640_val
2.3 模型导出脚本 (export.py)
此脚本可以将训练好的模型导出为ONNX或者TensorRT引擎,方便于部署到生产环境。
例如,将YOLOv7Tiny模型导出为ONNX并生成TensorRT引擎:
--onnx=yolov7-tiny.onnx --saveEngine=yolov7-tiny-nms.trt trt --fp16
3. 项目的配置文件介绍
配置文件主要位于data目录下的.yaml文件。它们定义了训练和测试时的数据加载、图像尺寸、类别数、锚框大小等关键参数。
3.1 数据集配置文件(如 coco.yaml)
数据集配置文件通常包括如下字段:
names: 类别名称列表。train: 训练集的路径。val: 验证集的路径。test: 测试集的路径。nc: 分类数量。size: 输入图像尺寸。batch_size: 批处理大小。
3.2 超参数文件(如 hyp/scratch.yaml, hyp/p5.yaml)
这些文件定义了训练过程中的超参数,例如学习率策略、损失函数权重、正负样本比例等。不同的模型变体可能需要不同的超参数配置,例如对于微调或从零开始训练。
3.3 模型配置文件(如 cfg/training/yolov7-custom.yaml)
模型配置文件指定了网络架构的具体细节,比如层数、卷积核大小等。这通常涉及到模型的宽度、深度和训练策略等信息。
以上就是YOLOv7-PyTorch项目的概览及关键文件的解释,希望对您理解和使用该项目有所帮助。祝您编码愉快!
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322