YOLOv7-PyTorch 使用教程
2024-08-08 19:13:08作者:凤尚柏Louis
1. 项目目录结构及介绍
项目目录结构如下:
.
├── README.md # 项目说明文件
├── data # 存放数据集相关配置和预处理脚本
│ ├── coco.yaml # COCO数据集配置文件示例
│ └── hyp # 超参数设置
│ ├── scratch.yaml # 从头训练的超参数
│ ├── p5.yaml # 针对YOLOv7的小模型参数
│ └── p6.yaml # 针对YOLOv7的大模型参数
├── model # 模型定义目录
│ ├── yolov7.py # YOLOv7模型代码
│ ├── yolov7-tiny.py # YOLOv7 Tiny模型代码
│ └── ... # 其他模型变种
├── scripts # 各种运行脚本
│ ├── train.py # 训练脚本
│ ├── test.py # 测试脚本
│ ├── export.py # 导出ONNX或TensorRT模型的脚本
│ └── ... # 其他辅助脚本
└── ... # 其他相关文件和目录
关键文件解释:
data目录包含了数据集相关的配置和超参数。model目录存储了YOLOv7系列模型的PyTorch实现。scripts目录提供了训练、测试以及模型转换的一系列脚本。
2. 项目的启动文件介绍
2.1 训练脚本 (train.py)
训练脚本通过指定的数据集路径、模型配置(.yaml 文件)、权重文件等参数来进行模型训练。
例如,如果你要训练一个从头开始的YOLOv7模型,可以运行以下命令:
python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7-custom.yaml --weights '' --name yolov7-custom --hyp data/hyp/scratch/custom.yaml
2.2 测试脚本 (test.py)
测试脚本用于评估模型在特定数据集上的性能,支持设置批大小、置信阈值和IoU阈值。
例如,进行COCO数据集上YOLOv7模型的验证集测试:
python test.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.65 --device 0 --weights yolov7.pt --name yolov7_640_val
2.3 模型导出脚本 (export.py)
此脚本可以将训练好的模型导出为ONNX或者TensorRT引擎,方便于部署到生产环境。
例如,将YOLOv7Tiny模型导出为ONNX并生成TensorRT引擎:
--onnx=yolov7-tiny.onnx --saveEngine=yolov7-tiny-nms.trt trt --fp16
3. 项目的配置文件介绍
配置文件主要位于data目录下的.yaml文件。它们定义了训练和测试时的数据加载、图像尺寸、类别数、锚框大小等关键参数。
3.1 数据集配置文件(如 coco.yaml)
数据集配置文件通常包括如下字段:
names: 类别名称列表。train: 训练集的路径。val: 验证集的路径。test: 测试集的路径。nc: 分类数量。size: 输入图像尺寸。batch_size: 批处理大小。
3.2 超参数文件(如 hyp/scratch.yaml, hyp/p5.yaml)
这些文件定义了训练过程中的超参数,例如学习率策略、损失函数权重、正负样本比例等。不同的模型变体可能需要不同的超参数配置,例如对于微调或从零开始训练。
3.3 模型配置文件(如 cfg/training/yolov7-custom.yaml)
模型配置文件指定了网络架构的具体细节,比如层数、卷积核大小等。这通常涉及到模型的宽度、深度和训练策略等信息。
以上就是YOLOv7-PyTorch项目的概览及关键文件的解释,希望对您理解和使用该项目有所帮助。祝您编码愉快!
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
492
3.62 K
Ascend Extension for PyTorch
Python
300
332
暂无简介
Dart
740
178
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
866
474
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
295
123
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
870