使用dperf测试100G网卡转发性能瓶颈分析
2025-06-07 14:17:21作者:齐冠琰
测试环境与问题描述
在基于dperf和DPDK的高性能网络测试环境中,我们遇到了一个典型的性能瓶颈问题。测试环境采用三台配备Intel E810-C 100G网卡的服务器,初始测试中两台服务器直接通过dperf进行流量测试能够达到线速100Gbps。然而,当在中间加入一台运行DPDK testpmd的转发设备后,性能骤降至约50Gbps。
硬件与软件配置
测试平台采用Intel Xeon Silver 4216处理器(32核@2.1GHz),配备Intel E810-C 100G网卡。软件环境为Ubuntu 22.04系统,内核版本6.8.0-49-generic,DPDK版本22.11,dperf基于fcf5035b032a提交版本。
系统优化方面已进行充分配置:
- 分配16个1GB大页内存
- CPU隔离设置(isolcpus=1-21)
- 关闭节能特性(idle=poll等)
- 启用VFIO和IOMMU
性能瓶颈分析
1. 转发设备资源不足
从testpmd的统计信息可见明显的丢包现象:
RX-packets: 819494879 RX-dropped: 356938203
这表明转发设备无法处理全部流量,主要原因包括:
- CPU资源不足:虽然使用了15个核心,但E810-C网卡在100G线速下需要更高的处理能力
- 队列配置不当:16个RX/TX队列可能无法充分利用硬件能力
- burst size设置不合理:默认32的burst size对高吞吐场景可能偏小
2. dperf配置优化空间
dperf客户端的配置存在可优化点:
- 未充分利用多核处理能力(仅使用单核)
- burst size设置与转发设备不匹配
- 不必要的RSS配置(物理网卡场景)
性能优化建议
1. 转发设备优化
CPU资源配置:
- 使用更多物理核心(建议至少20个)
- 确保核心绑定到正确的NUMA节点
- 考虑启用超线程(如有)
队列优化:
- 增加RX/TX队列数量(建议32个)
- 确保队列与CPU核心合理绑定
参数调整:
- 增大burst size(尝试64或128)
- 增加mbuf池大小
- 调整描述符数量(2048或更高)
2. dperf配置优化
多核利用:
- 启用多核心处理(launch_num参数)
- 合理分配CPU核心
参数匹配:
- 调整burst size与转发设备一致
- 移除不必要的RSS配置
- 优化payload size(考虑使用jumbo frame)
深入分析
在100G网络测试中,转发设备的性能至关重要。E810-C网卡虽然支持100G线速,但实际转发性能受限于:
- PCIe带宽:确保使用PCIe 4.0 x16接口
- 内存带宽:DDR4内存带宽可能成为瓶颈
- 缓存效率:优化数据局部性减少缓存失效
建议进一步监控:
- 使用DPDK的telemetry接口获取详细统计
- 监控CPU利用率(特别是转发核心)
- 检查PCIe带宽利用率
结论
100G网络性能测试是一个系统工程,需要端到端的优化。转发设备的处理能力往往是瓶颈所在,需要针对特定硬件进行精细调优。通过合理的资源配置和参数调整,可以显著提升转发性能,接近理论线速。
对于生产环境中的高性能网络测试,建议建立基准测试模型,逐步验证各组件性能,最终实现端到端的最优配置。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
299
2.65 K
Ascend Extension for PyTorch
Python
130
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
608
196
React Native鸿蒙化仓库
JavaScript
229
307
暂无简介
Dart
592
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
612
仓颉编译器源码及 cjdb 调试工具。
C++
122
511
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
181
67
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
457