使用dperf测试100G网卡转发性能瓶颈分析
2025-06-07 23:09:46作者:齐冠琰
测试环境与问题描述
在基于dperf和DPDK的高性能网络测试环境中,我们遇到了一个典型的性能瓶颈问题。测试环境采用三台配备Intel E810-C 100G网卡的服务器,初始测试中两台服务器直接通过dperf进行流量测试能够达到线速100Gbps。然而,当在中间加入一台运行DPDK testpmd的转发设备后,性能骤降至约50Gbps。
硬件与软件配置
测试平台采用Intel Xeon Silver 4216处理器(32核@2.1GHz),配备Intel E810-C 100G网卡。软件环境为Ubuntu 22.04系统,内核版本6.8.0-49-generic,DPDK版本22.11,dperf基于fcf5035b032a提交版本。
系统优化方面已进行充分配置:
- 分配16个1GB大页内存
- CPU隔离设置(isolcpus=1-21)
- 关闭节能特性(idle=poll等)
- 启用VFIO和IOMMU
性能瓶颈分析
1. 转发设备资源不足
从testpmd的统计信息可见明显的丢包现象:
RX-packets: 819494879 RX-dropped: 356938203
这表明转发设备无法处理全部流量,主要原因包括:
- CPU资源不足:虽然使用了15个核心,但E810-C网卡在100G线速下需要更高的处理能力
- 队列配置不当:16个RX/TX队列可能无法充分利用硬件能力
- burst size设置不合理:默认32的burst size对高吞吐场景可能偏小
2. dperf配置优化空间
dperf客户端的配置存在可优化点:
- 未充分利用多核处理能力(仅使用单核)
- burst size设置与转发设备不匹配
- 不必要的RSS配置(物理网卡场景)
性能优化建议
1. 转发设备优化
CPU资源配置:
- 使用更多物理核心(建议至少20个)
- 确保核心绑定到正确的NUMA节点
- 考虑启用超线程(如有)
队列优化:
- 增加RX/TX队列数量(建议32个)
- 确保队列与CPU核心合理绑定
参数调整:
- 增大burst size(尝试64或128)
- 增加mbuf池大小
- 调整描述符数量(2048或更高)
2. dperf配置优化
多核利用:
- 启用多核心处理(launch_num参数)
- 合理分配CPU核心
参数匹配:
- 调整burst size与转发设备一致
- 移除不必要的RSS配置
- 优化payload size(考虑使用jumbo frame)
深入分析
在100G网络测试中,转发设备的性能至关重要。E810-C网卡虽然支持100G线速,但实际转发性能受限于:
- PCIe带宽:确保使用PCIe 4.0 x16接口
- 内存带宽:DDR4内存带宽可能成为瓶颈
- 缓存效率:优化数据局部性减少缓存失效
建议进一步监控:
- 使用DPDK的telemetry接口获取详细统计
- 监控CPU利用率(特别是转发核心)
- 检查PCIe带宽利用率
结论
100G网络性能测试是一个系统工程,需要端到端的优化。转发设备的处理能力往往是瓶颈所在,需要针对特定硬件进行精细调优。通过合理的资源配置和参数调整,可以显著提升转发性能,接近理论线速。
对于生产环境中的高性能网络测试,建议建立基准测试模型,逐步验证各组件性能,最终实现端到端的最优配置。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0130
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
305
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
872