dperf多核性能优化:解决CPS模式下的RSS算法问题
2025-06-08 07:45:11作者:郜逊炳
多核性能异常现象分析
在使用dperf进行网络性能测试时,许多用户会遇到一个典型问题:在单核模式下能够达到320K CPS(每秒连接数)的高性能,但在启用多核模式后却出现严重错误,性能反而大幅下降。这种异常现象通常与RSS(接收端缩放)算法的配置不当有关。
硬件环境关键因素
从实际案例来看,这种问题常出现在特定硬件配置环境下:
- 使用海光Hygon C86 7380 32核处理器(共128个逻辑CPU)
- 搭配Intel XL710 40G网卡
- NUMA架构服务器(8个NUMA节点)
- 大页内存配置(64个1GB大页)
RSS算法的影响机制
RSS是现代网卡实现多队列的核心技术,它通过哈希算法将网络流量分配到不同CPU核心处理。但在CPS(每秒新建连接数)测试场景下,传统的L3L4 RSS算法可能导致:
- 连接分布不均:新建连接可能被集中分配到少数队列
- 锁竞争加剧:多核间同步开销增加
- 缓存失效:频繁的核间切换导致缓存命中率下降
优化方案与实践建议
针对dperf的多核CPS性能问题,推荐以下优化措施:
-
服务器IP配置:确保服务器IP数量与使用的CPU核心数一致,这是实现负载均衡的基础
-
RSS模式选择:
- 对于吞吐量测试,L3L4 RSS算法通常表现良好
- 对于CPS测试,建议不配置RSS或使用"auto"模式
- 避免在多核CPS测试中强制指定L3L4 RSS
-
NUMA亲和性优化:
- 绑定进程到特定NUMA节点
- 确保网卡与CPU处于同一NUMA域
- 使用正确的CPU核心范围(如示例中的80-87)
-
内存配置:
- 增加大页内存数量(当前配置52/64可能不足)
- 检查大页内存是否均匀分布在NUMA节点
-
参数调优:
- 调整tx_burst值(当前128)
- 监控并优化socket_mem配置(当前4096)
性能对比与预期
经过正确配置后,多核dperf应当展现出:
- 接近线性的性能扩展(核心数增加,性能同比提升)
- 稳定的连接建立速率
- 显著高于单核模式的总吞吐量
总结
dperf作为高性能网络测试工具,其多核性能极大依赖于正确的RSS配置和系统调优。理解底层硬件架构与网络协议栈的交互机制,是解决此类性能问题的关键。通过针对性的参数调整和配置优化,用户可以充分发挥多核服务器的性能潜力,获得理想的测试结果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869