NTIRE23-RTSR 项目使用教程
2024-09-19 05:29:48作者:柯茵沙
项目介绍
NTIRE23-RTSR 是一个用于实时4K超分辨率的开源项目,旨在通过深度学习模型和商业GPU实现图像的实时超分辨率处理。该项目是CVPR 2023 NTIRE(New Trends in Image Restoration and Enhancement)挑战赛的一部分,目标是处理30-60FPS的图像。NTIRE23-RTSR 提供了高效的深度学习模型,能够在RTX 3060和3090等GPU上实现高性能的图像超分辨率。
项目快速启动
环境准备
首先,确保你已经安装了Python 3.10,并创建一个虚拟环境:
conda create --name rtsr python==3.10
conda activate rtsr
安装依赖
接下来,安装PyTorch和其他依赖项:
conda install pytorch torchvision pytorch-cuda=11.8 -c pytorch -c nvidia
pip install -r requirements.txt
数据准备
生成低分辨率图像并测试模型。你可以使用以下命令生成低分辨率图像:
python demo/data/prepare_data.py --image-dir [IMAGE-ROOT] --lr-out-dir [LR-OUT-ROOT] --gt-out-dir [GT-OUT-DIR] --downsample-factor [2|3] --jpeg-level 90
测试模型
使用以下命令测试模型:
python code/test.py --dataroot [DATAROOT] --checkpoint-id rt4ksr_[x2|x3] --scale [x2|x3] --arch rt4ksr_rep --benchmark ntire23rtsr --is-train
应用案例和最佳实践
应用案例
NTIRE23-RTSR 可以应用于多种场景,包括但不限于:
- 摄影:提高照片的分辨率,使其更加清晰。
- 游戏:增强游戏画面的细节,提升视觉体验。
- 生成式AI:在生成高分辨率图像时,提供更好的细节和清晰度。
最佳实践
- 模型选择:根据具体的应用场景选择合适的模型,如从1080p到4K的X2模型或从720p到4K的X3模型。
- 硬件配置:确保使用高性能的GPU(如RTX 3090)以获得最佳的实时处理性能。
- 数据预处理:在训练和测试前,对数据进行适当的预处理,如JPEG压缩和降采样。
典型生态项目
相关项目
- RT4KSR:该项目提供了基线方法的官方测试代码,包括模型和预训练的检查点。
- NTIRE 2023 Efficient Super-Resolution Challenge:与NTIRE23-RTSR相关的另一个挑战,专注于高效的超分辨率技术。
通过这些项目的结合使用,可以进一步提升图像超分辨率的效果和性能。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0107
DuiLib_UltimateDuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03
GitCode百大开源项目GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选
收起
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
338
1.19 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
898
534
React Native鸿蒙化仓库
C++
188
265
deepin linux kernel
C
22
6
openGauss kernel ~ openGauss is an open source relational database management system
C++
140
188
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
374
387
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
86
4
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
114
45