NTIRE23-RTSR 项目使用教程
2024-09-19 12:30:42作者:柯茵沙
项目介绍
NTIRE23-RTSR 是一个用于实时4K超分辨率的开源项目,旨在通过深度学习模型和商业GPU实现图像的实时超分辨率处理。该项目是CVPR 2023 NTIRE(New Trends in Image Restoration and Enhancement)挑战赛的一部分,目标是处理30-60FPS的图像。NTIRE23-RTSR 提供了高效的深度学习模型,能够在RTX 3060和3090等GPU上实现高性能的图像超分辨率。
项目快速启动
环境准备
首先,确保你已经安装了Python 3.10,并创建一个虚拟环境:
conda create --name rtsr python==3.10
conda activate rtsr
安装依赖
接下来,安装PyTorch和其他依赖项:
conda install pytorch torchvision pytorch-cuda=11.8 -c pytorch -c nvidia
pip install -r requirements.txt
数据准备
生成低分辨率图像并测试模型。你可以使用以下命令生成低分辨率图像:
python demo/data/prepare_data.py --image-dir [IMAGE-ROOT] --lr-out-dir [LR-OUT-ROOT] --gt-out-dir [GT-OUT-DIR] --downsample-factor [2|3] --jpeg-level 90
测试模型
使用以下命令测试模型:
python code/test.py --dataroot [DATAROOT] --checkpoint-id rt4ksr_[x2|x3] --scale [x2|x3] --arch rt4ksr_rep --benchmark ntire23rtsr --is-train
应用案例和最佳实践
应用案例
NTIRE23-RTSR 可以应用于多种场景,包括但不限于:
- 摄影:提高照片的分辨率,使其更加清晰。
- 游戏:增强游戏画面的细节,提升视觉体验。
- 生成式AI:在生成高分辨率图像时,提供更好的细节和清晰度。
最佳实践
- 模型选择:根据具体的应用场景选择合适的模型,如从1080p到4K的X2模型或从720p到4K的X3模型。
- 硬件配置:确保使用高性能的GPU(如RTX 3090)以获得最佳的实时处理性能。
- 数据预处理:在训练和测试前,对数据进行适当的预处理,如JPEG压缩和降采样。
典型生态项目
相关项目
- RT4KSR:该项目提供了基线方法的官方测试代码,包括模型和预训练的检查点。
- NTIRE 2023 Efficient Super-Resolution Challenge:与NTIRE23-RTSR相关的另一个挑战,专注于高效的超分辨率技术。
通过这些项目的结合使用,可以进一步提升图像超分辨率的效果和性能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328