Scrapy-Playwright:集成Playwright的Scrapy扩展
项目介绍
Scrapy-Playwright 是一个Scrapy插件,它带来了Playwright的全部功能到Scrapy框架中。通过这个插件,开发者能够利用Playwright的强大浏览器自动化能力来爬取那些依赖JavaScript渲染的内容,处理cookies和headers,以及模拟各种用户行为。这对于现代web爬虫来说是至关重要的,因为它能有效地绕过复杂的网页防护机制,实现更加真实且高效的爬取。
项目快速启动
要开始使用Scrapy-Playwright,首先确保你的环境中已经安装了Scrapy及Node.js(因为Playwright需要)。然后,你可以通过pip安装此插件:
pip install scrapy-playwright
接下来,在你的Scrapy项目中的settings.py文件里,启用scrapy_playwright.handler.ScrapyPlaywrightDownloadHandler:
DOWNLOADER_MIDDLEWARES = {
'scrapy_playwright.handler.ScrapyPlaywrightDownloadHandler': None,
}
PLAYWRIGHT_BROWSER_TYPE = "chromium" # 或 "firefox", "webkit"
现在,你可以创建或修改一个Scrapy Spider来使用Playwright。下面是一个简单的例子:
import scrapy
class ExampleSpider(scrapy.Spider):
name = "example"
start_urls = ["http://example.com"]
def start_requests(self):
for url in self.start_urls:
yield scrapy.Request(url=url, meta={"playwright": True})
async def parse(self, response):
# 使用Playwright获取动态加载的内容
page = await response.meta["playwright"].page
dynamic_content = await page.content()
yield {"content": dynamic_content}
记得在命令行运行时加上 --no-sandbox 参数,如果遇到权限问题:
scrapy crawl example -s PLAYWRIGHT_LAUNCH_OPTIONS={'args': ['--no-sandbox']}
应用案例和最佳实践
动态内容抓取
Scrapy-Playwright特别适合于抓取动态网站,比如电商商品详情页,这些页面往往依赖JavaScript来异步加载数据。使用Playwright,你可以等待特定元素加载完成后再进行解析:
async def parse(self, response):
page = await response.meta["playwright"].page
await page.wait_for_selector('.product-details') # 等待产品详情元素出现
product_details = await page.query_selector_all('.product-details')
for detail in product_details:
# 进一步提取信息...
模拟登录与Cookies管理
对于需要登录的站点,可以直接通过Playwright操作浏览器的登录流程,甚至可以保存Session状态以复用:
# 登录逻辑(简化示例)
await page.fill('#username', 'your_username')
await page.fill('#password', 'your_password')
await page.click('button[type="submit"]')
# 然后,可以将Cookies保存并应用于后续请求
cookies = await page.context.cookies()
yield scrapy.Request(url="protected_area_url", cookies=cookies)
典型生态项目
虽然Scrapy-Playwright本身就是一个强大的工具,但在Scrapy的生态系统中,结合其他如Scrapy-Redis用于分布式爬取,或者使用JMESPath进行更复杂的JSON数据提取,可以进一步增强其功能性和灵活性。Scrapy-Playwright与这些工具的组合使用,让开发者能够构建出强大而灵活的数据采集解决方案,适应各种复杂的网络环境和数据需求。
以上就是关于如何开始使用Scrapy-Playwright的基本指导和一些高级应用的例子,希望这能帮助您高效地开发出应对现代Web挑战的爬虫程序。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00