SDV项目中确保合成数据生成可复现性的最佳实践
2025-06-29 16:13:08作者:秋阔奎Evelyn
在数据科学和机器学习领域,可复现性是一个至关重要的概念。本文将深入探讨如何在SDV(Synthetic Data Vault)项目中确保合成数据生成过程的可复现性,包括模型训练和采样两个关键阶段。
可复现性的重要性
可复现性意味着在相同条件下运行相同的代码能够产生完全相同的结果。对于合成数据生成而言,这尤为重要,因为:
- 确保实验结果可以验证
- 便于调试和问题追踪
- 支持协作开发
- 满足审计和合规要求
SDV中的可复现性实现
1. 采样阶段的可复现性
SDV目前原生支持采样阶段的可复现性。通过reset_sampling()
方法,可以在采样前重置随机状态:
# 训练模型
synthesizer.fit(real_data)
# 第一次采样
synthetic_data_1 = synthesizer.sample(100)
# 重置采样状态
synthesizer.reset_sampling()
# 第二次采样(结果将与第一次相同)
synthetic_data_2 = synthesizer.sample(100)
2. 模型训练阶段的可复现性
虽然SDV尚未原生支持训练阶段的可复现性,但可以通过设置各种随机种子来实现:
import os
import random
import numpy as np
import torch
def set_global_seed(seed=42):
"""设置全局随机种子以确保可复现性"""
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# 在训练前调用
set_global_seed(42)
synthesizer.fit(real_data)
3. 模型持久化方案
另一种确保可复现性的方法是保存训练好的模型:
# 训练并保存模型
synthesizer.fit(real_data)
synthesizer.save('model.pkl')
# 加载模型
loaded_synthesizer = GaussianCopulaSynthesizer.load('model.pkl')
# 采样(每次加载后第一次采样结果相同)
data = loaded_synthesizer.sample(100)
技术实现原理
- 随机种子:通过控制随机数生成器的初始状态,确保相同的随机序列
- CUDA确定性:在GPU环境下,禁用自动优化算法以确保确定性计算
- 哈希种子:控制Python内置哈希函数的随机化行为
- 状态保存:SDV内部维护采样状态,可通过reset方法重置
实际应用建议
- 对于生产环境,建议同时使用随机种子和模型保存两种方法
- 在实验阶段,记录使用的随机种子值
- 注意性能影响:确定性计算可能会降低性能
- 不同SDK版本可能产生不同结果,应记录版本信息
未来发展方向
SDV社区正在积极开发原生支持训练阶段可复现性的功能。目前可以通过上述方法实现大部分需求,但未来版本可能会提供更简洁的API。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.2 K

暂无简介
Dart
519
115

Ascend Extension for PyTorch
Python
62
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193