GLiNER项目:如何正确加载和使用微调后的本地模型
2025-07-06 00:38:53作者:胡易黎Nicole
在自然语言处理领域,GLiNER作为一个强大的实体识别框架,为用户提供了模型微调功能。然而,许多开发者在尝试加载本地微调后的模型时遇到了困难。本文将详细介绍如何正确加载和使用本地微调后的GLiNER模型。
常见问题分析
许多用户反馈,在尝试使用GLiNER.from_pretrained()
方法加载本地微调模型时,会遇到各种错误,主要包括:
- HFValidationError:当传递本地文件夹路径时,系统错误地将其视为HuggingFace仓库ID
- RepositoryNotFoundError:系统尝试从HuggingFace Hub下载而非使用本地文件
- 路径格式问题:不同操作系统下的路径格式差异导致的加载失败
正确加载本地微调模型的方法
方法一:使用完整路径格式
确保使用正确的路径格式指向包含模型文件的目录:
model = GLiNER.from_pretrained("./training_logs/finetuned_99", local_files_only=True)
关键点:
- 路径应指向包含
pytorch_model.bin
和gliner_config.json
的目录 - 必须设置
local_files_only=True
参数 - 使用相对路径时确保路径格式正确("./"开头)
方法二:直接加载模型文件
如果上述方法无效,可以采用更底层的加载方式:
from gliner.model import load_config_as_namespace
# 定义模型文件路径
model_file = "logs/finetuned_2999/pytorch_model.bin"
config_file = "logs/finetuned_2999/gliner_config.json"
# 加载配置
config = load_config_as_namespace(config_file)
model = GLiNER(config)
# 加载模型权重
state_dict = torch.load(model_file, map_location="cpu")
model.load_state_dict(state_dict, strict=False, assign=True)
model.to("cpu") # 或"cuda"如果使用GPU
这种方法完全绕过了HuggingFace的仓库验证机制,直接操作模型文件。
使用微调模型进行预测
加载模型后,可以像使用预训练模型一样进行实体识别:
text = "这是一段需要识别实体的文本"
labels = ["Facility", "Organization", "Person"] # 你的自定义标签
entities = model.predict_entities(text, labels, threshold=0.5)
for entity in entities:
print(f"识别到实体: {entity['text']} => {entity['label']}")
最佳实践建议
- 路径管理:建议使用绝对路径或确保相对路径的正确性
- 环境一致性:微调和预测时使用相同的Python环境和库版本
- 模型验证:加载后先在小样本上测试模型效果
- 错误处理:添加路径存在性检查等容错机制
通过以上方法,开发者可以顺利加载和使用本地微调的GLiNER模型,充分发挥自定义实体识别的强大能力。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58