首页
/ MiniGemini项目中ConvNext与Siglip模型融合的技术探讨

MiniGemini项目中ConvNext与Siglip模型融合的技术探讨

2025-06-25 23:40:54作者:凤尚柏Louis

背景介绍

MiniGemini是一个多模态大模型项目,其核心架构采用了视觉语言模型(VLM)与ConvNext的结合。在项目开发过程中,开发者们发现了一些值得深入探讨的技术细节问题,特别是关于ConvNext的Drop Path机制以及Siglip模型融合时的稳定性问题。

ConvNext的Drop Path机制优化

在原始MiniGemini实现中,ConvNext模块保留了0.1的Drop Path率,这是ConvNext标准训练配置的一部分。Drop Path是一种正则化技术,通过在训练过程中随机"丢弃"网络中的某些路径来防止过拟合。

然而,经过开发者进一步实验验证,关闭Drop Path机制反而带来了性能提升:

  • TextVQA任务从65.2提升至65.9
  • MME评测从1523/316提升至1540/332
  • MM-Vet评测从40.8提升至42.1

这一发现促使项目团队更新了代码,提供了不启用Drop Path的训练配置选项。这一改进表明,在多模态模型训练场景下,ConvNext作为特征提取器时,可能不需要过强的正则化约束。

Siglip模型融合的技术挑战

Siglip作为一种性能优于CLIP的新型视觉语言模型,开发者尝试将其引入MiniGemini框架时遇到了数值稳定性问题:

  1. 分辨率对齐问题:Siglip默认输入尺寸为384x384,输出特征图尺寸为27x27,这要求ConvNext的输入分辨率必须调整为864才能保持空间对齐。

  2. 数值不稳定现象:在训练初期(iter=2)就会出现NaN值,即使将所有计算转换为FP32精度也无法解决。问题主要出现在注意力计算环节:

    embed_att = embed_query[:, :, None] @ (embed_aux.transpose(-1, -2) / (embed_aux.shape[-1] ** 0.5))
    
  3. 预处理差异:Siglip与CLIP使用不同的图像预处理均值和标准差,虽然理论上特征分布一致性更重要,但实际融合时可能产生影响。

技术启示与建议

  1. 模型融合稳定性:不同视觉模型的特征分布可能存在较大差异,直接替换可能导致数值不稳定。建议采用渐进式融合策略或添加归一化层。

  2. 正则化策略选择:预训练模型在下游任务微调时,可能需要调整原有正则化强度,Drop Path并非总是必要。

  3. 多模态对齐:当替换视觉骨干网络时,需要仔细考虑输入输出分辨率、特征维度等对齐问题,简单的尺寸调整可能不足以保证训练稳定性。

这些实践经验为多模态模型开发提供了有价值的参考,特别是在模型组件替换和优化过程中需要注意的技术细节。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
27
11
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
flutter_flutterflutter_flutter
暂无简介
Dart
715
172
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
kernelkernel
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
rainbondrainbond
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1