Trajectory-Transformer 项目安装和配置指南
2026-01-21 04:05:29作者:魏侃纯Zoe
1. 项目基础介绍和主要编程语言
项目基础介绍
Trajectory-Transformer 是一个用于轨迹预测的 Transformer 网络项目。该项目基于 Transformer 架构,旨在通过深度学习技术预测物体的未来轨迹。该项目的主要应用场景包括自动驾驶、机器人导航等领域。
主要编程语言
该项目主要使用 Python 编程语言进行开发。
2. 项目使用的关键技术和框架
关键技术
- Transformer 网络:基于 Transformer 架构,用于处理序列数据,特别是轨迹数据。
- PyTorch:深度学习框架,用于构建和训练 Transformer 模型。
- KMeans:用于聚类分析,特别是在量化轨迹预测中使用。
框架
- PyTorch 1.0+:用于构建和训练深度学习模型。
- Numpy:用于数值计算。
- Scipy:用于科学计算。
- Pandas:用于数据处理和分析。
- Tensorboard:用于训练过程的可视化。
- kmeans_pytorch:用于 GPU 加速的 KMeans 聚类。
3. 项目安装和配置的准备工作和详细安装步骤
准备工作
在开始安装和配置之前,请确保您的系统满足以下要求:
- Python 3.6 或更高版本
- PyTorch 1.0 或更高版本
- CUDA(如果使用 GPU 进行训练)
- Git
详细安装步骤
步骤 1:克隆项目仓库
首先,使用 Git 克隆项目仓库到本地:
git clone https://github.com/FGiuliari/Trajectory-Transformer.git
cd Trajectory-Transformer
步骤 2:创建虚拟环境(可选)
为了隔离项目依赖,建议创建一个虚拟环境:
python -m venv trajectory_env
source trajectory_env/bin/activate # 在 Windows 上使用 trajectory_env\Scripts\activate
步骤 3:安装依赖
使用 pip 安装项目所需的依赖:
pip install -r requirements.txt
步骤 4:数据准备
项目的 dataset 文件夹需要按照以下结构进行组织:
- dataset
- dataset_name
- train_folder
- test_folder
- validation_folder (可选)
- clusters.mat (用于量化TF)
步骤 5:训练 Individual Transformer
要训练 Individual Transformer,请运行以下命令:
CUDA_VISIBLE_DEVICES=0 python train_individualTF.py --dataset_name eth --name eth --max_epoch 240 --batch_size 100 --name eth_train --factor 1
步骤 6:训练 QuantizedTF
要训练 QuantizedTF,请按照以下步骤操作:
-
创建聚类:
CUDA_VISIBLE_DEVICES=0 python kmeans.py --dataset_name eth将生成的
clusters.mat文件放入相应的数据集文件夹中。 -
训练量化模型:
CUDA_VISIBLE_DEVICES=0 python train_quantizedTF.py --dataset_name zara1 --name zara1 --batch_size 1024 -
评估模型:
CUDA_VISIBLE_DEVICES=0 python test_quantizedTF.py --dataset_name eth --name eth --batch_size 1024 --epoch 00030 --num_samples 20
步骤 7:可视化训练过程
使用 Tensorboard 可视化训练过程:
tensorboard --logdir logs
通过以上步骤,您应该能够成功安装和配置 Trajectory-Transformer 项目,并开始进行轨迹预测模型的训练和评估。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178