Great Expectations 1.3.14版本发布:SQLAlchemy 2.0支持与数据类型校验优化
Great Expectations是一个开源的数据质量验证工具,它帮助数据工程师和分析师定义、记录和验证数据质量预期。通过声明式的期望语法,用户可以轻松构建数据质量测试套件,确保数据在管道中的可靠性。
核心功能增强
SQLAlchemy 2.0全面兼容
本次1.3.14版本最重要的改进之一是全面支持SQLAlchemy 2.x版本。开发团队特别针对BigQuery数据源进行了适配,确保用户在升级SQLAlchemy后仍能正常使用Great Expectations的所有功能。这一改进解决了之前版本中SQLAlchemy 2.0兼容性问题,为用户提供了更灵活的依赖管理选择。
数据类型校验修复
修复了ExpectColumnValuesToBeOfType期望类型的校验逻辑,该功能现在能够正确处理各种数据类型验证场景,特别是在使用SQLAlchemy 2.0时。这个修复确保了数据质量检查的准确性,特别是在处理复杂数据类型转换时。
新增功能与依赖管理
Redshift专用依赖包
版本引入了gx-redshift额外依赖组,为Amazon Redshift用户提供了更精细的依赖管理。用户现在可以通过安装gx[redshift]来获取Redshift相关的所有必要依赖,而不必安装所有数据库驱动,这有助于减少不必要的依赖冲突和包体积。
数据质量指标增强
新增核心指标类型
1.3.14版本引入了多个新的数据质量指标,丰富了数据质量分析的维度:
- BatchColumnTypes:批量获取列数据类型信息,便于整体数据模式分析
- SampleValues:抽样展示列中的实际值,帮助用户快速了解数据内容
- ColumnDistinctValuesCount:计算列中不同值的数量,用于基数分析
- ColumnNullCount:精确计算列中的空值数量,评估数据完整性
这些新指标为用户提供了更全面的数据质量洞察能力,特别是在数据探索和异常检测阶段。
问题修复与稳定性改进
字符编码处理优化
修复了行条件解析器对8位字符的支持问题,确保了包含特殊字符的条件表达式能够被正确解析。这一改进对国际化应用和多语言数据环境尤为重要。
上下文根目录处理
改进了get_context方法对context_root_dir参数的处理逻辑,确保在不同工作目录下都能正确加载配置文件。这一修复提高了工具在不同部署环境中的一致性。
文档与用户体验改进
更新了使用文档,特别是关于任务调度和PostHog集成配置的部分,使新用户能够更快速地掌握工具的高级用法。同时优化了包的自动补全行为,提升了开发体验。
总结
Great Expectations 1.3.14版本在SQLAlchemy兼容性、数据类型校验和核心指标功能方面做出了重要改进,同时增强了工具的稳定性和用户体验。这些改进使Great Expectations在复杂数据环境中的应用更加可靠,为数据质量保障提供了更强大的工具支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00