VLMEvalKit中Qwen2.5-VL模型加载问题解析与解决方案
问题背景
在使用VLMEvalKit评估工具对Qwen2.5-VL-3B模型进行评估时,开发者可能会遇到一个典型的模型加载错误。该错误表现为尝试将一个形状为torch.Size([2048])的张量加载到预期形状为torch.Size([1280])的"bias"参数中,导致模型加载失败。值得注意的是,直接使用transformers库加载相同模型却能正常工作,这表明问题与VLMEvalKit的特定实现有关。
问题根源分析
经过深入排查,发现问题源于VLMEvalKit中模型加载逻辑的设计方式。该工具通过检查模型路径名称中的关键词来确定应该加载哪种模型类。具体来说:
- 当路径中包含"2.5"、"2_5"或"qwen25"等关键词时,会加载Qwen2.5_VLForConditionalGeneration类
- 否则默认加载Qwen2VLForConditionalGeneration类
这种设计导致当模型路径不包含上述关键词时,工具会错误地加载Qwen2VL模型类而非Qwen2.5VL模型类,从而引发张量形状不匹配的错误。
解决方案
针对这一问题,开发者可以采取以下几种解决方案:
方案一:修改模型路径名称
最简单的解决方案是在模型路径中加入能够标识Qwen2.5版本的关键词,如"2.5"、"2_5"或"qwen25"。这样VLMEvalKit就能正确识别并加载对应的模型类。
方案二:手动指定模型类
对于需要更精确控制的情况,可以直接修改VLMEvalKit的源代码,强制指定使用Qwen2.5_VLForConditionalGeneration类。这需要修改模型加载部分的代码逻辑。
方案三:使用推荐版本
Qwen2.5-VL官方推荐的transformers版本为4.51.3。确保使用这个版本可以避免许多潜在的兼容性问题。同时,测试表明transformers 4.51.0也能同时支持Qwen2和Qwen2.5 VL模型的评估。
最佳实践建议
- 版本管理:始终使用官方推荐的库版本,特别是对于较新的模型架构
- 路径规范:建立统一的模型存储路径命名规范,包含明确的版本信息
- 环境隔离:为不同模型系列创建独立的环境,避免版本冲突
- 错误诊断:遇到类似张量形状不匹配的错误时,首先检查模型类是否加载正确
总结
这个问题揭示了模型评估工具中一个常见的设计考量:如何准确识别和加载不同版本的模型。VLMEvalKit采用的路径关键词检测方法虽然简单直接,但也带来了潜在的误识别风险。开发者在使用时应当注意路径命名的规范性,并在遇到问题时优先考虑模型类加载是否正确这一可能性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00