使用ObjAX框架实现MNIST手写数字识别教程
2025-06-19 17:38:42作者:伍希望
引言
ObjAX是一个基于JAX的深度学习框架,提供了类似于PyTorch的API设计风格。本教程将带领读者使用ObjAX框架构建和训练一个卷积神经网络(CNN)模型,用于MNIST手写数字识别任务。
环境准备与数据加载
首先需要导入必要的Python库:
import numpy as np
import jax
import jax.numpy as jn
import objax
import matplotlib.pyplot as plt
MNIST数据集可以通过Keras直接加载:
import tensorflow.keras as keras
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
ObjAX与PyTorch类似,采用通道优先的数据格式(CHW),因此我们需要调整数据维度并将像素值归一化到[0,1]范围:
x_train = x_train[:,None,:,:]/255.0
x_test = x_test[:,None,:,:]/255.0
模型构建
我们首先构建一个简单的CNN模型,包含三个卷积层和ReLU激活函数:
def conv_relu_pool(in_layers, out_layers, pool=True):
ops = [objax.nn.Conv2D(in_layers, out_layers, 5),
objax.functional.relu]
if pool:
ops.append(lambda x: objax.functional.average_pool_2d(x, size=2, strides=1))
return ops
model = objax.nn.Sequential(conv_relu_pool(1, 32) +
conv_relu_pool(32, 32) +
conv_relu_pool(32, 64) +
[objax.nn.Conv2D(64, 10, 1),
lambda x: x.mean((2,3))])
这个模型结构的特点是:
- 使用5x5的卷积核
- 每层后接ReLU激活
- 使用平均池化降采样
- 最后使用1x1卷积将特征图转换为10类输出
训练流程
优化器设置
使用Adam优化器:
opt = objax.optimizer.Adam(model.vars())
预测函数
使用JIT编译加速预测过程:
predict = objax.Jit(lambda x: objax.functional.softmax(model(x)), model.vars())
损失函数
定义交叉熵损失函数:
def loss(x, label):
logit = model(x)
return objax.functional.loss.cross_entropy_logits_sparse(logit, label).mean()
梯度计算与训练操作
gv = objax.GradValues(loss, model.vars())
def train_op_nojit(x, y):
g, v = gv(x, y)
opt(lr=0.002, grads=g)
return v
train_op = objax.Jit(train_op_nojit, model.vars() + opt.vars())
模型训练
训练10个epoch:
def train_epoch(batch_size=50):
losses = []
for x_batch, y_batch in zip(x_train.reshape((-1, batch_size, 1, 28, 28)),
y_train.reshape((-1, batch_size))):
losses.append(train_op(x_batch, y_batch))
return np.mean(losses)
for i in range(10):
print('loss', train_epoch())
模型评估
定义准确率计算函数:
def compute_accuracy():
test_predictions = [predict(test_batch).argmax(1)
for test_batch in x_test.reshape((-1, 50, 1, 28, 28))]
return np.mean(y_test == np.array(test_predictions).flatten())
print('model accuracy', compute_accuracy())
更大模型的构建与训练
为了获得更好的性能,我们可以构建一个更大的模型:
model = objax.nn.Sequential(conv_relu_pool(1, 32, pool=False) +
conv_relu_pool(32, 64) +
conv_relu_pool(64, 64, pool=False) +
conv_relu_pool(64, 128) +
[objax.nn.Conv2D(128, 10, 1),
lambda x: x.mean((2,3))])
加入L1正则化防止过拟合:
def loss_with_wd(x, label):
logit = model(x)
xe_loss = objax.functional.loss.cross_entropy_logits_sparse(logit, label).mean()
wd_loss = sum(jn.abs(v).sum() for k,v in model.vars().items() if k.endswith('.w'))
return xe_loss + wd_loss * 1e-5
训练更大的模型:
for i in range(10):
random_shuffle = np.arange(x_train.shape[0])
np.random.shuffle(random_shuffle)
x_train = x_train[random_shuffle]
y_train = y_train[random_shuffle]
print('loss', train_epoch(batch_size=200))
模型权重分析
可以分析模型权重的稀疏性:
for k,v in model.vars().items():
if k.endswith('.w'):
print("Small weight ratio on layer", k, (jn.abs(v) < 1e-2).mean())
总结
本教程展示了如何使用ObjAX框架:
- 加载和预处理MNIST数据集
- 构建CNN模型
- 设置优化器和损失函数
- 训练和评估模型
- 构建更大模型并分析权重
ObjAX结合了JAX的高性能自动微分和PyTorch风格的API设计,使得深度学习模型的开发和训练更加高效。通过本教程,读者可以掌握ObjAX的基本使用方法,并应用于自己的深度学习项目中。
登录后查看全文
热门项目推荐
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
153
1.98 K

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
505
42

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
194
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
938
554

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
332
11

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70