XTuner项目中LLaVA模型添加特殊令牌的技术实践
2025-06-13 19:11:06作者:劳婵绚Shirley
背景介绍
在XTuner项目中使用LLaVA模型进行监督微调(SFT)时,开发者经常需要为特定任务添加特殊令牌(special tokens)。这些特殊令牌可以帮助模型更好地理解输入数据的结构和语义,提升模型在特定任务上的表现。然而,在已有模型权重的基础上添加新令牌会带来技术挑战,特别是维度不匹配问题。
问题分析
当我们在已训练好的LLaVA模型上添加特殊令牌时,主要会遇到两个关键问题:
- 词汇表扩展:需要将新令牌添加到tokenizer的词汇表中
- 模型权重调整:需要相应调整语言模型部分的词嵌入层大小
具体表现为尝试加载已有权重时会出现维度不匹配错误,例如输出层维度从[92544, 512]变为[92547, 512]的情况。
解决方案
1. 添加特殊令牌到tokenizer
首先需要在数据处理阶段将特殊令牌添加到tokenizer中。核心代码如下:
for special_token in special_tokens:
if special_token not in tokenizer.get_vocab():
tokenizer.add_tokens([special_token], special_tokens=True)
这段代码会检查每个特殊令牌是否已存在于词汇表中,如果不存在则添加,并标记为特殊令牌。
2. 调整模型词嵌入层大小
添加令牌后,必须相应调整语言模型部分的词嵌入层大小。在LLaVA模型初始化时需要进行以下操作:
self.llm = self._build_from_cfg_or_module(llm)
self.llm.resize_token_embeddings(new_vocab_size) # 调整为新词汇表大小
self.visual_encoder = self._build_from_cfg_or_module(visual_encoder)
其中new_vocab_size是添加特殊令牌后的新词汇表大小。
3. 处理预训练权重加载
当从已有检查点加载权重时,需要特别注意维度转换问题。可以参考XTuner项目中的权重转换逻辑,在加载预训练权重时进行适当的维度调整,确保新旧词汇表能够正确对应。
技术细节
-
词汇表扩展机制:添加新令牌时,tokenizer会扩展其内部词汇表,而模型需要相应扩展其词嵌入矩阵。新添加的令牌对应的词向量通常会被初始化为随机值。
-
维度一致性检查:在模型加载阶段,系统会严格检查各层权重张量的维度是否匹配。任何不匹配都会导致运行时错误。
-
微调策略:添加新令牌后,建议对模型进行全面微调,特别是新添加的令牌对应的词向量部分,以确保它们能够学习到有意义的表示。
最佳实践
- 在添加特殊令牌前,仔细规划所需的令牌集合,避免频繁修改词汇表
- 记录词汇表变更情况,确保训练和推理阶段使用相同的tokenizer配置
- 对于生产环境,建议将添加特殊令牌后的模型重新导出为完整检查点
- 监控模型在新令牌上的表现,必要时进行针对性训练
通过以上方法,开发者可以灵活地为XTuner项目中的LLaVA模型添加所需特殊令牌,同时确保模型能够正确加载和训练。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1