首页
/ XTuner项目中LLaVA模型添加特殊令牌的技术实践

XTuner项目中LLaVA模型添加特殊令牌的技术实践

2025-06-13 14:42:58作者:劳婵绚Shirley

背景介绍

在XTuner项目中使用LLaVA模型进行监督微调(SFT)时,开发者经常需要为特定任务添加特殊令牌(special tokens)。这些特殊令牌可以帮助模型更好地理解输入数据的结构和语义,提升模型在特定任务上的表现。然而,在已有模型权重的基础上添加新令牌会带来技术挑战,特别是维度不匹配问题。

问题分析

当我们在已训练好的LLaVA模型上添加特殊令牌时,主要会遇到两个关键问题:

  1. 词汇表扩展:需要将新令牌添加到tokenizer的词汇表中
  2. 模型权重调整:需要相应调整语言模型部分的词嵌入层大小

具体表现为尝试加载已有权重时会出现维度不匹配错误,例如输出层维度从[92544, 512]变为[92547, 512]的情况。

解决方案

1. 添加特殊令牌到tokenizer

首先需要在数据处理阶段将特殊令牌添加到tokenizer中。核心代码如下:

for special_token in special_tokens:
    if special_token not in tokenizer.get_vocab():
        tokenizer.add_tokens([special_token], special_tokens=True)

这段代码会检查每个特殊令牌是否已存在于词汇表中,如果不存在则添加,并标记为特殊令牌。

2. 调整模型词嵌入层大小

添加令牌后,必须相应调整语言模型部分的词嵌入层大小。在LLaVA模型初始化时需要进行以下操作:

self.llm = self._build_from_cfg_or_module(llm)
self.llm.resize_token_embeddings(new_vocab_size)  # 调整为新词汇表大小
self.visual_encoder = self._build_from_cfg_or_module(visual_encoder)

其中new_vocab_size是添加特殊令牌后的新词汇表大小。

3. 处理预训练权重加载

当从已有检查点加载权重时,需要特别注意维度转换问题。可以参考XTuner项目中的权重转换逻辑,在加载预训练权重时进行适当的维度调整,确保新旧词汇表能够正确对应。

技术细节

  1. 词汇表扩展机制:添加新令牌时,tokenizer会扩展其内部词汇表,而模型需要相应扩展其词嵌入矩阵。新添加的令牌对应的词向量通常会被初始化为随机值。

  2. 维度一致性检查:在模型加载阶段,系统会严格检查各层权重张量的维度是否匹配。任何不匹配都会导致运行时错误。

  3. 微调策略:添加新令牌后,建议对模型进行全面微调,特别是新添加的令牌对应的词向量部分,以确保它们能够学习到有意义的表示。

最佳实践

  1. 在添加特殊令牌前,仔细规划所需的令牌集合,避免频繁修改词汇表
  2. 记录词汇表变更情况,确保训练和推理阶段使用相同的tokenizer配置
  3. 对于生产环境,建议将添加特殊令牌后的模型重新导出为完整检查点
  4. 监控模型在新令牌上的表现,必要时进行针对性训练

通过以上方法,开发者可以灵活地为XTuner项目中的LLaVA模型添加所需特殊令牌,同时确保模型能够正确加载和训练。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8