Kubernetes Metrics Server 节点IP地址错误问题排查与解决
2025-06-04 15:58:56作者:温艾琴Wonderful
问题背景
在Kubernetes集群中,Metrics Server作为核心监控组件,负责收集节点和Pod的资源使用指标。但在实际部署中,用户可能会遇到Metrics Server间歇性报错的问题,表现为无法通过特定IP地址获取节点指标数据。这些错误通常与节点多网卡环境下的IP地址选择有关。
错误现象分析
典型的错误日志会显示类似以下内容:
Failed to scrape node err="Get \"https://10.101.3.75:10250/metrics/resource\": dial tcp 10.101.3.75:10250: connect: connection refused"
同时伴随Horizontal Pod Autoscaler的警告信息:
invalid metrics (1 invalid out of 1), first error is: failed to get cpu resource metric value
值得注意的是,虽然出现这些错误,但kubectl top nodes
命令仍能正常返回节点指标数据,这表明Metrics Server在部分时间段能够正常工作。
根本原因
经过深入分析,发现问题根源在于:
- 节点配置了多个网络接口,属于不同子网(如172.18.x.x和10.101.x.x)
- Calico CNI的IP自动检测机制可能选择了非预期的网络接口
- Metrics Server通过Kubernetes API获取节点地址时,可能获取到非工作网络接口的IP
解决方案
方案一:调整Calico网络配置
通过修改Calico DaemonSet的配置,明确指定IP检测方法:
env:
- name: NODEIP
valueFrom:
fieldRef:
fieldPath: status.hostIP
- name: IP_AUTODETECTION_METHOD
value: can-reach=$(NODEIP)
- name: IP
value: autodetect
此配置确保Calico使用能够到达节点IP的网络接口。
方案二:优化节点网络配置
- 通过netplan重新配置节点网络
- 禁用不需要的网络接口(特别是10.x.x.x子网的接口)
- 重启Calico相关Pod使配置生效
方案三:调整Metrics Server参数
虽然在本案例中效果有限,但在其他场景下可以尝试:
args:
- --kubelet-preferred-address-types=InternalIP
- --kubelet-use-node-status-port
验证与效果
实施上述解决方案后,通过以下方式验证:
- 检查Metrics Server日志,确认不再出现连接拒绝错误
- 使用
calicoctl get nodes -o wide
确认节点IP地址符合预期 - 观察Horizontal Pod Autoscaler是否恢复正常工作
最佳实践建议
- 在生产环境中,应为节点配置明确的网络接口优先级
- 使用
kubectl get nodes -o wide
定期检查节点IP地址分配情况 - 考虑为关键网络组件(如Calico、Metrics Server)配置明确的网络选择策略
- 在多网卡环境中,建议禁用不必要的网络接口以减少潜在问题
总结
Kubernetes集群中Metrics Server的节点指标收集问题往往与底层网络配置密切相关。通过合理配置CNI插件和节点网络,可以有效解决因多网卡环境导致的IP地址选择问题。本案例提供的解决方案不仅适用于Metrics Server,对于其他依赖节点网络通信的Kubernetes组件也具有参考价值。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
881
521

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
361
381

React Native鸿蒙化仓库
C++
181
264

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
613
60

open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
118
78