research-charnet 的安装和配置教程
2025-05-27 18:52:35作者:邓越浪Henry
1. 项目的基础介绍和主要的编程语言
research-charnet 是一个基于卷积神经网络的开源项目,主要用于字符识别任务。它是由 Linjie Xing、Zhi Tian、Weilin Huang 和 Matthew R. Scott 在 2019 年 IEEE 国际计算机视觉会议(ICCV)上发表的论文《Convolutional Character Networks》的实现。该项目通过采用卷积神经网络(CNN)来识别图像中的字符,具有很高的学术研究和实际应用价值。主要的编程语言是 Python。
2. 项目使用的关键技术和框架
该项目使用的关键技术是卷积神经网络(CNN),并且主要依赖以下框架和库:
- PyTorch:一个开源的机器学习库,广泛用于计算机视觉、自然语言处理等领域的深度学习模型开发。
- Torchvision:基于 PyTorch 的计算机视觉库,提供了许多常用的数据集、模型和图像变换工具。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装前,请确保您的系统中已经安装了以下依赖:
- Python(建议使用 Python 3)
- pip(Python 的包管理工具)
- GCC(用于编译 PyTorch 扩展)
安装步骤
-
安装 PyTorch 和 Torchvision
首先,您需要根据 PyTorch 官方网站提供的指南安装 PyTorch 和 Torchvision。您可以通过以下命令进行安装:
pip install torch torchvision -
克隆项目仓库
使用 git 命令将项目克隆到本地:
git clone https://github.com/msight-tech/research-charnet.git cd research-charnet -
安装项目依赖
在项目目录中,使用以下命令安装项目所需的 Python 包:
pip install -r requirements.txt如果 requirements.txt 文件不存在,则需要手动安装项目可能需要的包,如 numpy、Pillow 等。
-
下载预训练权重
项目提供了一个脚本来下载预训练的权重文件。运行以下命令:
bash download_weights.sh -
运行测试脚本
为了验证安装是否成功,您可以运行测试脚本。请将
<images_dir>替换为包含 ICDAR 2015 测试图像的目录,将<results_dir>替换为存储结果的目录:python tools/test_net.py configs/icdar2015_hourglass88.yaml <images_dir> <results_dir>
完成以上步骤后,您应该已经成功安装并配置了 research-charnet 项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882