Kotest中shouldContainAll断言方法的预期与实际值顺序问题分析
问题背景
Kotest是一个流行的Kotlin测试框架,提供了丰富的断言方法来验证测试结果。其中shouldContainAll
是一个常用的集合断言方法,用于验证一个集合是否包含另一个集合的所有元素。然而,在Kotest 5.9.1版本中,开发者发现该方法在断言失败时输出的错误信息中,"expected"和"but was"的顺序出现了颠倒。
问题现象
当使用shouldContainAll
进行断言时,如果断言失败,错误信息会显示集合中缺少的元素以及可能的匹配项。但开发者注意到,在显示预期值和实际值的比较时,顺序出现了错误:
expected: PriceModifierWoodType(value=10.01, woodType=ASH),
but was: PriceModifierWoodType(value=10.0099999999999997868371792719699442386627197265625, woodType=ASH),
实际上,value=10.009999999...
是来自预期集合(priceSettingsDto
),而value=10.01
是来自被测试的实际集合(priceSettings
)。这意味着错误信息中的"expected"和"but was"标签被错误地交换了。
问题复现
使用框架提供的标准测试数据可以轻松复现这个问题:
class ReproduceIssue: StringSpec() {
init {
"reproduce wrong order" {
listOf(sweetGreenPear, sweetGreenApple) shouldContainAll listOf(sweetRedApple)
}
}
}
错误输出显示:
Collection should contain all of [Fruit(name=apple, color=red, taste=sweet)] but was missing [Fruit(name=apple, color=red, taste=sweet)]Possible matches:
expected: Fruit(name=apple, color=green, taste=sweet),
but was: Fruit(name=apple, color=red, taste=sweet),
The following fields did not match:
"color" expected: <"green">, but was: <"red">
从逻辑上看,expected
应该是红色的苹果(来自断言参数),而but was
应该是绿色的苹果(来自被测试集合)。但实际输出正好相反。
问题影响
这个顺序错误虽然不会影响断言本身的正确性,但会给开发者调试带来困扰:
- 开发者可能会误解哪个值是预期的,哪个是实际的
- 在快速浏览错误信息时可能导致错误的调试方向
- 与Kotest其他断言方法的错误信息格式不一致,造成混淆
问题范围
经过确认,这个问题不仅存在于shouldContainAll
方法中,同样也影响到了shouldContain
方法。这表明这可能是集合断言方法中的一个系统性错误。
技术分析
从实现角度看,这类断言方法通常需要:
- 比较实际集合和预期集合
- 找出实际集合中缺少的元素
- 尝试为缺少的元素在实际集合中寻找最接近的匹配项
- 生成详细的错误信息
问题很可能出现在错误信息生成阶段,特别是在标记"expected"和"but was"时混淆了两者的顺序。
解决方案
该问题已被确认并修复。修复后的版本将正确显示预期值和实际值的顺序,使错误信息更加清晰和一致。开发者在使用较新版本的Kotest时,可以期待更准确的错误报告。
最佳实践
在使用集合断言方法时,建议:
- 注意错误信息中"expected"和"but was"的含义
- 在遇到意外结果时,仔细检查实际集合和预期集合的内容
- 保持Kotest版本更新,以获取最准确的错误报告
- 对于复杂的集合比较,考虑使用更详细的断言或自定义匹配器
这个问题提醒我们,即使是成熟的测试框架也可能存在细微的问题,开发者在使用时应保持警惕,并在发现问题时及时反馈。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









