Comet-LLM项目中的自定义LLM调用成本追踪实践
2025-06-01 13:30:23作者:平淮齐Percy
背景介绍
在大型语言模型(LLM)应用开发中,当开发者选择不使用现成的编排框架(如LangChain等)而采用自定义实现时,如何有效追踪LLM调用的token消耗和成本计算成为一个常见挑战。Comet-LLM项目作为一个专业的LLM监控和追踪工具,为这类场景提供了灵活的解决方案。
核心问题分析
在自定义实现的LLM代理(Agent)工作流中,开发者通常会遇到以下问题:
- 框架集成方案(如Gemini集成)可能无法满足特定的调用分组需求
- 需要手动记录token使用情况和计算成本
- 希望将这些监控数据与Comet的追踪功能无缝集成
解决方案详解
Comet-LLM提供了两种主要方式来解决上述问题:
1. 使用@track装饰器手动追踪
通过在关键函数上添加@opik.track装饰器,开发者可以精确控制追踪范围。这种方式特别适合需要自定义分组逻辑的场景:
@opik.track(type="llm")
def custom_llm_call(...):
# LLM调用逻辑
2. 手动更新Span数据
对于需要更细粒度控制的场景,可以使用update_current_span方法手动记录token和成本信息:
from opik.opik_context import update_current_span
def fake_llm_call(...):
response = client.generate_content(...)
update_current_span(
usage={
"prompt_tokens": input_tokens,
"completion_tokens": output_tokens,
"total_tokens": total_tokens,
},
total_cost=calculated_cost,
model="gemini-pro",
provider="gemini"
)
高级技巧
- 成本自动计算:通过同时提供model和provider参数,Comet可以利用内置的定价信息自动计算成本
- 追踪分组:合理使用@track装饰器的层级结构,可以创建符合业务逻辑的追踪分组
- 混合模式:可以结合使用框架集成和手动追踪,在复杂场景中获得最佳效果
最佳实践建议
- 对于简单的自定义实现,优先考虑使用框架集成方案
- 当集成方案无法满足分组需求时,采用手动@track装饰器方案
- 在需要记录额外元数据时,使用update_current_span方法
- 始终提供model和provider信息以获得最佳的成本计算支持
总结
Comet-LLM为自定义LLM实现提供了灵活而强大的监控能力。通过合理使用其提供的装饰器和API,开发者可以在不依赖编排框架的情况下,依然获得完整的调用追踪和成本监控能力。这种灵活性使得Comet-LLM成为各种LLM应用开发场景下的理想监控解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137