PyTorch教程:贝叶斯深度学习原理与实践
2025-06-19 23:46:34作者:宣聪麟
引言
在传统深度学习中,神经网络通常输出确定性预测结果。然而,现实世界充满不确定性,特别是在医疗诊断、自动驾驶等关键领域,了解模型预测的不确定性至关重要。本教程将系统介绍贝叶斯深度学习的核心概念和PyTorch实现方法。
贝叶斯深度学习基础
不确定性类型
- 认知不确定性(Epistemic Uncertainty):源于模型参数的不确定性,随着数据量增加而减少
- 偶然不确定性(Aleatoric Uncertainty):数据本身固有的噪声,无法通过更多数据消除
与传统深度学习的区别
传统神经网络学习确定性的权重参数,而贝叶斯神经网络将权重视为随机变量,学习其概率分布。这种方法能够:
- 量化预测不确定性
- 提高模型鲁棒性
- 支持小数据学习
- 检测分布外样本
核心方法实现
蒙特卡洛Dropout
这是一种简单高效的近似贝叶斯推断方法:
import torch
import torch.nn as nn
class MCDropoutModel(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 512)
self.dropout = nn.Dropout(0.5)
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.dropout(x) # 保持测试时也开启
return self.fc2(x)
使用时需多次前向传播获取预测分布:
model.eval() # 但dropout保持激活
predictions = torch.stack([model(x) for _ in range(100)])
mean = predictions.mean(0)
std = predictions.std(0)
变分贝叶斯神经网络
通过变分推断近似参数后验分布:
class BayesianLinear(nn.Module):
def __init__(self, in_features, out_features):
super().__init__()
# 均值参数
self.w_mu = nn.Parameter(torch.Tensor(out_features, in_features))
# 对数方差参数
self.w_logvar = nn.Parameter(torch.Tensor(out_features, in_features))
def forward(self, x):
# 重参数化技巧
w_std = torch.exp(0.5 * self.w_logvar)
epsilon = torch.randn_like(w_std)
weights = self.w_mu + w_std * epsilon
return torch.nn.functional.linear(x, weights)
深度集成方法
结合多个模型的预测来估计不确定性:
ensemble = [Model() for _ in range(5)]
predictions = torch.stack([model(x) for model in ensemble])
uncertainty = predictions.var(dim=0)
不确定性校准
良好的不确定性估计应该与实际错误率一致。常用校准方法:
- 温度缩放(Temperature Scaling):学习一个温度参数调整softmax输出
- 直方图分箱(Histogram Binning):基于验证集的分段校准
- 保序回归(Isotonic Regression):非参数校准方法
# 温度缩放示例
temperature = nn.Parameter(torch.ones(1))
optimizer = torch.optim.LBFGS([temperature], lr=0.01)
def eval():
optimizer.zero_grad()
loss = nn.CrossEntropyLoss()(logits/temperature, targets)
loss.backward()
return loss
optimizer.step(eval)
应用场景
医疗诊断
贝叶斯神经网络可以为诊断结果提供置信度,帮助医生判断:
- 高不确定性提示需要进一步检查
- 低不确定性结果可直接用于决策
自动驾驶
实时不确定性估计可用于:
- 危险情况预警
- 控制权交接决策
- 路径规划风险评估
金融预测
在股票价格预测、信用评分等场景中:
- 量化预测风险
- 动态调整投资组合
- 异常交易检测
最佳实践
- 数据量少时:优先考虑变分贝叶斯方法
- 计算资源充足时:深度集成通常性能最佳
- 需要快速部署时:蒙特卡洛Dropout是良好折中
- 校准阶段:务必使用独立验证集
- 不确定性解释:区分认知和偶然不确定性
总结
贝叶斯深度学习为神经网络提供了"自知之明",使其能够识别自身知识的局限性。通过本教程介绍的方法,开发者可以在PyTorch中实现:
- 可靠的预测不确定性量化
- 更安全的AI系统
- 数据高效的机器学习模型
- 鲁棒的决策支持工具
掌握这些技术对于构建可信赖的AI应用至关重要,特别是在那些错误代价高昂的关键领域。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143