PyTorch教程:贝叶斯深度学习原理与实践
2025-06-19 23:46:34作者:宣聪麟
引言
在传统深度学习中,神经网络通常输出确定性预测结果。然而,现实世界充满不确定性,特别是在医疗诊断、自动驾驶等关键领域,了解模型预测的不确定性至关重要。本教程将系统介绍贝叶斯深度学习的核心概念和PyTorch实现方法。
贝叶斯深度学习基础
不确定性类型
- 认知不确定性(Epistemic Uncertainty):源于模型参数的不确定性,随着数据量增加而减少
- 偶然不确定性(Aleatoric Uncertainty):数据本身固有的噪声,无法通过更多数据消除
与传统深度学习的区别
传统神经网络学习确定性的权重参数,而贝叶斯神经网络将权重视为随机变量,学习其概率分布。这种方法能够:
- 量化预测不确定性
- 提高模型鲁棒性
- 支持小数据学习
- 检测分布外样本
核心方法实现
蒙特卡洛Dropout
这是一种简单高效的近似贝叶斯推断方法:
import torch
import torch.nn as nn
class MCDropoutModel(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 512)
self.dropout = nn.Dropout(0.5)
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.dropout(x) # 保持测试时也开启
return self.fc2(x)
使用时需多次前向传播获取预测分布:
model.eval() # 但dropout保持激活
predictions = torch.stack([model(x) for _ in range(100)])
mean = predictions.mean(0)
std = predictions.std(0)
变分贝叶斯神经网络
通过变分推断近似参数后验分布:
class BayesianLinear(nn.Module):
def __init__(self, in_features, out_features):
super().__init__()
# 均值参数
self.w_mu = nn.Parameter(torch.Tensor(out_features, in_features))
# 对数方差参数
self.w_logvar = nn.Parameter(torch.Tensor(out_features, in_features))
def forward(self, x):
# 重参数化技巧
w_std = torch.exp(0.5 * self.w_logvar)
epsilon = torch.randn_like(w_std)
weights = self.w_mu + w_std * epsilon
return torch.nn.functional.linear(x, weights)
深度集成方法
结合多个模型的预测来估计不确定性:
ensemble = [Model() for _ in range(5)]
predictions = torch.stack([model(x) for model in ensemble])
uncertainty = predictions.var(dim=0)
不确定性校准
良好的不确定性估计应该与实际错误率一致。常用校准方法:
- 温度缩放(Temperature Scaling):学习一个温度参数调整softmax输出
- 直方图分箱(Histogram Binning):基于验证集的分段校准
- 保序回归(Isotonic Regression):非参数校准方法
# 温度缩放示例
temperature = nn.Parameter(torch.ones(1))
optimizer = torch.optim.LBFGS([temperature], lr=0.01)
def eval():
optimizer.zero_grad()
loss = nn.CrossEntropyLoss()(logits/temperature, targets)
loss.backward()
return loss
optimizer.step(eval)
应用场景
医疗诊断
贝叶斯神经网络可以为诊断结果提供置信度,帮助医生判断:
- 高不确定性提示需要进一步检查
- 低不确定性结果可直接用于决策
自动驾驶
实时不确定性估计可用于:
- 危险情况预警
- 控制权交接决策
- 路径规划风险评估
金融预测
在股票价格预测、信用评分等场景中:
- 量化预测风险
- 动态调整投资组合
- 异常交易检测
最佳实践
- 数据量少时:优先考虑变分贝叶斯方法
- 计算资源充足时:深度集成通常性能最佳
- 需要快速部署时:蒙特卡洛Dropout是良好折中
- 校准阶段:务必使用独立验证集
- 不确定性解释:区分认知和偶然不确定性
总结
贝叶斯深度学习为神经网络提供了"自知之明",使其能够识别自身知识的局限性。通过本教程介绍的方法,开发者可以在PyTorch中实现:
- 可靠的预测不确定性量化
- 更安全的AI系统
- 数据高效的机器学习模型
- 鲁棒的决策支持工具
掌握这些技术对于构建可信赖的AI应用至关重要,特别是在那些错误代价高昂的关键领域。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322