ModelContextProtocol C SDK:如何为第三方类添加字段描述
2025-07-08 21:58:37作者:温玫谨Lighthearted
在开发基于ModelContextProtocol C# SDK的工具时,我们经常会遇到需要将第三方类作为工具输入参数的情况。这些第三方类通常没有包含足够的元数据描述,这会影响AI对输入参数的理解和使用。本文将介绍如何优雅地为这些第三方类添加字段描述信息。
问题背景
当我们在工具方法中使用第三方类作为参数时,例如:
public CallToolResponse testTool(Foo foo)
{
return new CallToolResponse()
{
Content = [new Content { Text = "hello") }],
IsError = false
};
}
其中Foo类可能来自第三方库,结构可能很复杂,包含嵌套类和继承关系:
class ParentOfFoo
{
string myStr;
}
class Foo : ParentOfFoo
{
Bar bar;
}
class Bar
{
Baz baz;
}
class Baz
{
int myInt;
}
默认情况下,SDK生成的输入模式(InputSchema)不会包含这些字段的描述信息,这会影响AI对参数的理解。
解决方案
ModelContextProtocol C# SDK提供了SchemaCreateOptions.TransformSchemaNode属性,允许我们通过委托来定制生成的模式文档。这个功能位于McpServerToolCreateOptions中。
实现步骤
-
创建模式转换器:编写一个委托方法,用于检查和修改模式节点
-
配置工具创建选项:在创建工具时设置转换器
-
应用描述信息:在转换器中根据类型或成员信息添加描述
示例代码
var options = new McpServerToolCreateOptions
{
SchemaCreateOptions = new()
{
TransformSchemaNode = (schemaNode, context) =>
{
// 为字段添加描述
if (context.MemberInfo is PropertyInfo property)
{
schemaNode.Description = GetDescriptionForProperty(property);
}
else if (context.Type != null)
{
schemaNode.Description = GetDescriptionForType(context.Type);
}
return schemaNode;
}
}
};
// 创建工具时传入选项
var tool = mcpServer.CreateTool(testTool, options);
描述信息获取策略
你可以根据实际需求实现GetDescriptionForProperty和GetDescriptionForType方法,常见策略包括:
- 硬编码字典:为已知类型和属性建立描述字典
- 命名约定:根据属性名自动生成描述
- 外部配置文件:从JSON或XML文件加载描述
- 反射分析:通过分析类型和属性名生成基础描述
最佳实践
- 保持一致性:确保同类属性的描述风格一致
- 简明扼要:描述应简洁明了,便于AI理解
- 覆盖全面:为所有重要字段添加描述
- 分层处理:优先处理常用类和关键属性
- 可维护性:考虑将描述信息集中管理
总结
通过使用ModelContextProtocol C# SDK提供的模式转换功能,我们可以灵活地为第三方类添加字段描述,而无需修改原始代码。这种方法既保持了代码的整洁性,又提供了AI所需的元数据信息,是处理第三方类集成的优雅解决方案。
对于大型项目,建议建立一个集中的描述信息管理系统,可以结合命名约定和外部配置文件,实现描述信息的统一管理和维护。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322