Pinocchio中计算经典加速度雅可比时间导数的正确方法
背景介绍
Pinocchio是一个用于机器人动力学计算的开源C++库,广泛应用于机器人控制、运动规划等领域。在使用过程中,开发者matheecs发现getFrameJacobianTimeVariation
方法返回的结果与getFrameClassicalAcceleration
计算结果不一致,这引发了关于如何正确计算经典加速度雅可比时间导数的讨论。
问题本质
在机器人动力学中,我们需要区分两种加速度表示:
- 空间加速度(Spatial Acceleration):包含角加速度和线加速度的6维向量
- 经典加速度(Classical Acceleration):通常指点的线加速度
matheecs发现直接使用getFrameJacobianTimeVariation
计算得到的经典加速度与getFrameClassicalAcceleration
结果不符。这是因为前者计算的是空间加速度雅可比的时间导数,而后者给出的是经典加速度。
数学关系
根据刚体运动学,经典加速度与空间加速度之间存在以下关系:
a_classical = a_spatial.linear + ω × v_linear
其中:
a_classical
是经典加速度a_spatial
是空间加速度ω
是角速度v_linear
是线速度
相应地,经典加速度雅可比的时间导数J̇_c
与空间加速度雅可比的时间导数J̇_s
之间的关系为:
J̇_c = J̇_s + ω × J_l
其中J_l
是线速度雅可比矩阵。
解决方案
jcarpent提供了验证这一关系的Python代码示例:
# 计算空间加速度
J_s = pin.getFrameJacobian(model,data,frame_id, pin.LOCAL)
Jdot_s = pin.getFrameJacobianTimeVariation(model,data,frame_id, pin.LOCAL)
a_s_bis = pin.Motion(J_s @ v_dot + Jdot_s @ v)
# 计算经典加速度
J_c = J_s.copy()
w_cross = pin.skew(v_s.angular)
Jdot_c = Jdot_s.copy()
Jdot_c[:3,:] += w_cross @ J_c[:3,:]
a_c_bis = pin.Motion(J_c @ v_dot + Jdot_c @ v)
这段代码清晰地展示了如何从空间加速度雅可比及其时间导数转换到经典加速度的计算过程。
实际应用中的注意事项
-
参考坐标系选择:计算结果会随选择的参考坐标系(LOCAL/WORLD/LOCAL_WORLD_ALIGNED)而变化,需要根据应用场景正确选择。
-
数值验证:对于关键应用,建议通过数值微分方法验证解析结果的正确性。
-
性能考虑:在实时控制系统中,应预先计算并缓存重复使用的量(如ω×J_l项)。
总结
Pinocchio库提供了强大的机器人动力学计算功能,但使用者需要清楚理解不同加速度表示之间的区别和转换关系。通过本文介绍的方法,开发者可以正确计算经典加速度及其雅可比时间导数,确保机器人控制算法的准确性。对于更复杂的需求,建议参考Pinocchio的官方文档和相关刚体动力学理论。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~085CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









