Pinocchio中计算经典加速度雅可比时间导数的正确方法
背景介绍
Pinocchio是一个用于机器人动力学计算的开源C++库,广泛应用于机器人控制、运动规划等领域。在使用过程中,开发者matheecs发现getFrameJacobianTimeVariation方法返回的结果与getFrameClassicalAcceleration计算结果不一致,这引发了关于如何正确计算经典加速度雅可比时间导数的讨论。
问题本质
在机器人动力学中,我们需要区分两种加速度表示:
- 空间加速度(Spatial Acceleration):包含角加速度和线加速度的6维向量
- 经典加速度(Classical Acceleration):通常指点的线加速度
matheecs发现直接使用getFrameJacobianTimeVariation计算得到的经典加速度与getFrameClassicalAcceleration结果不符。这是因为前者计算的是空间加速度雅可比的时间导数,而后者给出的是经典加速度。
数学关系
根据刚体运动学,经典加速度与空间加速度之间存在以下关系:
a_classical = a_spatial.linear + ω × v_linear
其中:
a_classical是经典加速度a_spatial是空间加速度ω是角速度v_linear是线速度
相应地,经典加速度雅可比的时间导数J̇_c与空间加速度雅可比的时间导数J̇_s之间的关系为:
J̇_c = J̇_s + ω × J_l
其中J_l是线速度雅可比矩阵。
解决方案
jcarpent提供了验证这一关系的Python代码示例:
# 计算空间加速度
J_s = pin.getFrameJacobian(model,data,frame_id, pin.LOCAL)
Jdot_s = pin.getFrameJacobianTimeVariation(model,data,frame_id, pin.LOCAL)
a_s_bis = pin.Motion(J_s @ v_dot + Jdot_s @ v)
# 计算经典加速度
J_c = J_s.copy()
w_cross = pin.skew(v_s.angular)
Jdot_c = Jdot_s.copy()
Jdot_c[:3,:] += w_cross @ J_c[:3,:]
a_c_bis = pin.Motion(J_c @ v_dot + Jdot_c @ v)
这段代码清晰地展示了如何从空间加速度雅可比及其时间导数转换到经典加速度的计算过程。
实际应用中的注意事项
-
参考坐标系选择:计算结果会随选择的参考坐标系(LOCAL/WORLD/LOCAL_WORLD_ALIGNED)而变化,需要根据应用场景正确选择。
-
数值验证:对于关键应用,建议通过数值微分方法验证解析结果的正确性。
-
性能考虑:在实时控制系统中,应预先计算并缓存重复使用的量(如ω×J_l项)。
总结
Pinocchio库提供了强大的机器人动力学计算功能,但使用者需要清楚理解不同加速度表示之间的区别和转换关系。通过本文介绍的方法,开发者可以正确计算经典加速度及其雅可比时间导数,确保机器人控制算法的准确性。对于更复杂的需求,建议参考Pinocchio的官方文档和相关刚体动力学理论。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00