OpenPI项目:如何在缺少手腕摄像头数据的情况下进行模型微调
2025-06-26 09:43:23作者:俞予舒Fleming
背景介绍
OpenPI是一个开源的机器人学习项目,提供了基于多模态输入的机器人控制策略。在实际应用中,研究人员可能会遇到训练数据不完整的情况,特别是缺少手腕摄像头数据。本文将详细介绍在这种情况下如何进行有效的模型微调。
解决方案概述
针对缺少手腕摄像头数据的情况,OpenPI项目提供了两种主要解决方案:
- 数据填充法:通过复制现有视角图像或使用空白图像填充缺失的手腕摄像头数据
- 架构修改法:修改模型架构和训练配置,完全移除对手腕摄像头数据的依赖
详细实现方法
数据填充法实现
这种方法最为简单直接,适合快速实验。具体实现可以参考项目中的Libero策略处理方式:
# 示例代码:使用现有图像填充缺失的手腕摄像头数据
if wrist_image is None:
wrist_image = existing_image.copy() # 或者使用空白图像
优点:
- 无需修改模型架构
- 保持原有输入维度不变
- 实现简单快速
缺点:
- 可能引入无效信息
- 训练效率可能降低
架构修改法实现
这种方法需要更多代码工作,但能获得更优化的模型:
- 创建新的数据配置:移除手腕图像相关的配置项
- 修改训练配置:在训练配置文件中调整输入设置
- 定制策略模块:创建新的策略类处理修改后的输入
优点:
- 模型更精简
- 计算效率更高
- 避免无效信息干扰
缺点:
- 需要更多开发工作
- 可能需要重新调整超参数
其他模态数据的处理
类似的方法也可以应用于处理缺失的其他模态数据,如本体感知数据:
- 状态数据缺失:可以使用零填充或均值填充
- 多摄像头缺失:可以仅保留单一视角
但需要注意,本体感知数据(特别是关节空间动作)的缺失会导致性能显著下降。
实际应用建议
- 对于快速原型开发,建议先尝试数据填充法
- 对于生产环境部署,建议采用架构修改法
- 多模态数据缺失时,性能下降是累积性的,需权衡开发成本与性能需求
- 可以尝试混合方法,如初期使用填充法,后期转向架构修改
性能考量
根据实际测试,仅使用第三视角摄像头的配置相比多摄像头配置:
- 性能略有下降(约10-15%)
- 但仍在可接受范围内
- 推理速度可能有所提升
完全移除状态信息会导致:
- 泛化能力大幅下降
- 关节空间动作控制效果显著变差
- 复杂任务成功率降低
总结
OpenPI项目提供了灵活的方式来处理不完整的训练数据。研究人员可以根据实际需求和资源情况,选择最适合的方法进行模型微调。无论采用哪种方法,都需要注意性能监控和结果验证,确保模型在实际应用中的可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0113
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
432
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
351
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
689
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
79
37
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
671