Pixel2Mesh 项目使用教程
2024-09-15 00:10:41作者:郜逊炳
1. 项目目录结构及介绍
Pixel2Mesh/
├── Data/
│ ├── examples/
│ ├── train_list.txt
│ └── test_list.txt
├── Docs/
│ └── images/
├── external/
├── p2m/
├── .gitattributes
├── LICENSE
├── README.md
├── demo.py
├── eval_testset.py
└── train.py
目录结构介绍
-
Data/: 包含项目所需的数据文件,如示例图像、训练和测试列表等。
- examples/: 存放示例图像文件。
- train_list.txt: 训练数据列表。
- test_list.txt: 测试数据列表。
-
Docs/: 包含项目文档相关的文件,如图片等。
- images/: 存放文档中使用的图片。
-
external/: 包含项目依赖的外部库或工具。
-
p2m/: 项目的主要代码目录,包含模型实现和相关工具。
-
.gitattributes: Git 属性配置文件。
-
LICENSE: 项目许可证文件。
-
README.md: 项目介绍和使用说明。
-
demo.py: 项目演示脚本,用于展示如何使用模型生成3D网格模型。
-
eval_testset.py: 用于评估测试集的脚本。
-
train.py: 用于训练模型的脚本。
2. 项目启动文件介绍
demo.py
demo.py 是项目的演示脚本,用于展示如何使用预训练模型从单张RGB图像生成3D网格模型。
使用方法
python demo.py --image Data/examples/plane.png
该命令将从 Data/examples/plane.png 图像生成3D网格模型,并保存为 Data/examples/plane.obj。
train.py
train.py 是用于训练模型的脚本。通过该脚本,用户可以自定义训练数据、学习率等参数。
使用方法
python train.py
该命令将启动训练过程,训练数据和参数可以在 train.py 中进行配置。
eval_testset.py
eval_testset.py 是用于评估测试集的脚本。通过该脚本,用户可以评估模型在测试集上的表现。
使用方法
python eval_testset.py
该命令将启动评估过程,评估结果将显示在控制台中。
3. 项目的配置文件介绍
train.py 中的配置
在 train.py 中,用户可以配置以下参数:
- 训练数据路径: 可以通过修改
train.py中的路径来指定训练数据的位置。 - 学习率: 可以通过修改
train.py中的学习率参数来调整模型的训练速度。 - 其他参数: 如批量大小、训练轮数等,也可以在
train.py中进行配置。
demo.py 中的配置
在 demo.py 中,用户可以配置以下参数:
- 输入图像路径: 可以通过命令行参数
--image指定输入图像的路径。 - 输出模型路径: 生成的3D网格模型将保存在指定的路径中。
eval_testset.py 中的配置
在 eval_testset.py 中,用户可以配置以下参数:
- 测试数据路径: 可以通过修改
eval_testset.py中的路径来指定测试数据的位置。 - 评估参数: 如评估指标等,也可以在
eval_testset.py中进行配置。
通过以上配置,用户可以根据自己的需求调整项目的运行方式和参数设置。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C097
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
探索未来显示技术:Adafruit_SH1106 图形库 推荐使用 taggingJS:一款轻量级的前端标签插件!【亲测免费】 探索像素级完美的结构化运动:PixSFM 推荐开源项目:DropPoint - 让拖放操作更简单【亲测免费】 推荐开源项目:picocom——小巧而强大的串口通信工具 推荐使用:NATS .NET 客户端【亲测免费】 推荐开源项目:MiracleCast - 智能无线显示实现 探索安全新维度:backdoor-apk 动态后门注入工具 探秘Viasfora:Visual Studio 2022的文本编辑增强利器 推荐使用:go-reuseport - 实现高效端口复用的Go语言库
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.55 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
232
97
暂无简介
Dart
728
175
React Native鸿蒙化仓库
JavaScript
287
340
Ascend Extension for PyTorch
Python
287
320
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
445
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19