Pixel2Mesh 项目使用教程
2024-09-15 10:33:52作者:郜逊炳
1. 项目目录结构及介绍
Pixel2Mesh/
├── Data/
│ ├── examples/
│ ├── train_list.txt
│ └── test_list.txt
├── Docs/
│ └── images/
├── external/
├── p2m/
├── .gitattributes
├── LICENSE
├── README.md
├── demo.py
├── eval_testset.py
└── train.py
目录结构介绍
-
Data/: 包含项目所需的数据文件,如示例图像、训练和测试列表等。
- examples/: 存放示例图像文件。
- train_list.txt: 训练数据列表。
- test_list.txt: 测试数据列表。
-
Docs/: 包含项目文档相关的文件,如图片等。
- images/: 存放文档中使用的图片。
-
external/: 包含项目依赖的外部库或工具。
-
p2m/: 项目的主要代码目录,包含模型实现和相关工具。
-
.gitattributes: Git 属性配置文件。
-
LICENSE: 项目许可证文件。
-
README.md: 项目介绍和使用说明。
-
demo.py: 项目演示脚本,用于展示如何使用模型生成3D网格模型。
-
eval_testset.py: 用于评估测试集的脚本。
-
train.py: 用于训练模型的脚本。
2. 项目启动文件介绍
demo.py
demo.py 是项目的演示脚本,用于展示如何使用预训练模型从单张RGB图像生成3D网格模型。
使用方法
python demo.py --image Data/examples/plane.png
该命令将从 Data/examples/plane.png 图像生成3D网格模型,并保存为 Data/examples/plane.obj。
train.py
train.py 是用于训练模型的脚本。通过该脚本,用户可以自定义训练数据、学习率等参数。
使用方法
python train.py
该命令将启动训练过程,训练数据和参数可以在 train.py 中进行配置。
eval_testset.py
eval_testset.py 是用于评估测试集的脚本。通过该脚本,用户可以评估模型在测试集上的表现。
使用方法
python eval_testset.py
该命令将启动评估过程,评估结果将显示在控制台中。
3. 项目的配置文件介绍
train.py 中的配置
在 train.py 中,用户可以配置以下参数:
- 训练数据路径: 可以通过修改
train.py中的路径来指定训练数据的位置。 - 学习率: 可以通过修改
train.py中的学习率参数来调整模型的训练速度。 - 其他参数: 如批量大小、训练轮数等,也可以在
train.py中进行配置。
demo.py 中的配置
在 demo.py 中,用户可以配置以下参数:
- 输入图像路径: 可以通过命令行参数
--image指定输入图像的路径。 - 输出模型路径: 生成的3D网格模型将保存在指定的路径中。
eval_testset.py 中的配置
在 eval_testset.py 中,用户可以配置以下参数:
- 测试数据路径: 可以通过修改
eval_testset.py中的路径来指定测试数据的位置。 - 评估参数: 如评估指标等,也可以在
eval_testset.py中进行配置。
通过以上配置,用户可以根据自己的需求调整项目的运行方式和参数设置。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Launch4j中文版:Java应用程序打包成EXE的终极解决方案
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
653
149
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
641
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
仓颉编译器源码及 cjdb 调试工具。
C++
130
864
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言测试用例。
Cangjie
37
856