DXcam 项目使用教程
1. 项目介绍
DXcam 是一个基于 Python 的高性能屏幕捕捉库,专为 Windows 系统设计,使用 Desktop Duplication API 实现。它能够以超过 240Hz 的频率进行屏幕捕捉,适用于需要高帧率捕捉的场景,如深度学习管道中的 FPS 游戏分析。与现有的 Python 解决方案(如 python-mss 和 D3DShot)相比,DXcam 提供了更快的捕捉速度、对 Direct3D 独占全屏应用的无干扰捕捉、自动处理缩放/拉伸分辨率、以及在捕捉模式下精确的 FPS 目标设定。
2. 项目快速启动
安装
从 PyPI 安装 DXcam:
pip install dxcam
如果需要同时安装 OpenCV(DXcam 依赖 OpenCV 进行颜色空间转换),可以使用以下命令:
pip install dxcam[cv2]
基本使用
以下是一个简单的示例,展示如何使用 DXcam 进行屏幕截图:
import dxcam
# 创建一个 DXCamera 实例
camera = dxcam.create()
# 进行屏幕截图
frame = camera.grab()
# 显示截图
from PIL import Image
Image.fromarray(frame).show()
区域截图
如果你想捕捉屏幕的特定区域,可以使用 region 参数:
left, top = (1920 - 640) // 2, (1080 - 640) // 2
right, bottom = left + 640, top + 640
region = (left, top, right, bottom)
frame = camera.grab(region=region)
屏幕捕捉
启动屏幕捕捉并获取最新帧:
camera.start(region=(left, top, right, bottom))
for i in range(1000):
image = camera.get_latest_frame()
camera.stop()
3. 应用案例和最佳实践
深度学习中的屏幕捕捉
DXcam 特别适用于需要高帧率屏幕捕捉的深度学习应用,如 FPS 游戏中的实时分析。以下是一个简单的示例,展示如何将捕捉到的帧用于深度学习模型的输入:
import dxcam
import torch
camera = dxcam.create()
camera.start()
model = torch.load('your_model.pth')
for i in range(1000):
frame = camera.get_latest_frame()
if frame is not None:
# 预处理帧
input_tensor = preprocess(frame)
# 模型推理
output = model(input_tensor)
# 处理输出
process_output(output)
camera.stop()
视频录制
DXcam 还可以用于视频录制,特别是在需要高帧率录制的场景中:
import dxcam
import cv2
target_fps = 120
camera = dxcam.create(output_idx=0, output_color="BGR")
camera.start(target_fps=target_fps, video_mode=True)
writer = cv2.VideoWriter(
"video.mp4", cv2.VideoWriter_fourcc(*"mp4v"), target_fps, (1920, 1080)
)
for i in range(600):
writer.write(camera.get_latest_frame())
camera.stop()
writer.release()
4. 典型生态项目
OpenCV
OpenCV 是一个开源的计算机视觉库,广泛用于图像处理和视频分析。DXcam 与 OpenCV 的集成非常紧密,可以直接将捕捉到的帧用于 OpenCV 的图像处理任务。
PyTorch
PyTorch 是一个流行的深度学习框架,DXcam 捕捉到的帧可以直接用于 PyTorch 模型的输入,适用于实时分析和训练。
PIL (Pillow)
Pillow 是 Python 的一个图像处理库,DXcam 捕捉到的帧可以直接转换为 PIL 图像对象进行进一步处理。
通过这些生态项目的集成,DXcam 可以广泛应用于各种需要高帧率屏幕捕捉的场景,如游戏分析、实时监控、视频录制等。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00