LLM-Shearing 开源项目教程
1. 项目介绍
LLM-Shearing 是一个由普林斯顿大学 NLP 团队开发的开源项目,旨在通过结构化剪枝技术加速大型语言模型(LLM)的预训练过程。该项目基于 MosaicML 的 Composer 包,专门优化和设计用于大规模语言模型的预训练。通过 LLM-Shearing,用户可以有效地将现有的 LLM 剪枝为更小、更高效的模型,从而显著减少计算资源和时间成本。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的环境中已经安装了 PyTorch 和 Flash Attention。您可以通过以下命令进行安装:
pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
pip install flash-attn==1.0.3
2.2 安装 LLM-Shearing
克隆项目仓库并安装所需的依赖包:
git clone https://github.com/princeton-nlp/LLM-Shearing.git
cd LLM-Shearing
pip install -r requirement.txt
pip install -e .
2.3 数据准备
参考 llmshearing/data
目录中的说明,使用 MosaicML 的 Streaming 包准备数据。
2.4 模型准备
将 Hugging Face 的模型权重转换为 Composer 兼容的格式:
HF_MODEL_NAME=meta-llama/Llama-2-7b-hf
OUTPUT_PATH=models/Llama-2-7b-composer/state_dict.pt
mkdir -p $(dirname $OUTPUT_PATH)
python3 -m llmshearing.utils.composer_to_hf save_hf_to_composer $HF_MODEL_NAME $OUTPUT_PATH
2.5 剪枝和继续预训练
使用提供的脚本进行模型剪枝和继续预训练:
# 剪枝
bash llmshearing/scripts/pruning.sh
# 继续预训练
bash llmshearing/scripts/continue_pretraining.sh
3. 应用案例和最佳实践
3.1 案例一:加速 LLaMA 模型预训练
通过 LLM-Shearing,用户可以将 LLaMA-2-7B 模型剪枝为 1.3B 和 2.7B 参数的模型,显著减少预训练所需的计算资源和时间。剪枝后的模型在下游任务和指令调优任务中表现优异,且计算成本仅为从头开始训练的 3%。
3.2 案例二:动态批量加载
LLM-Shearing 还提供了一种动态批量加载算法,可以根据不同域的损失减少率动态调整数据加载比例,从而提高数据利用效率和模型性能。
4. 典型生态项目
4.1 MosaicML Composer
LLM-Shearing 基于 MosaicML 的 Composer 包,Composer 是一个专门为大规模语言模型预训练设计的优化工具包,提供了丰富的功能和优化策略。
4.2 Hugging Face Transformers
LLM-Shearing 支持将剪枝后的模型转换为 Hugging Face 的 Transformers 格式,方便用户进行推理和微调。
4.3 RedPajama 数据集
LLM-Shearing 使用 RedPajama 数据集进行预训练,RedPajama 是一个高质量的开源数据集,适用于各种语言模型的训练。
通过以上步骤,您可以快速上手 LLM-Shearing 项目,并利用其强大的剪枝和预训练功能,加速您的语言模型开发和应用。
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09