LLM-Shearing 开源项目教程
1. 项目介绍
LLM-Shearing 是一个由普林斯顿大学 NLP 团队开发的开源项目,旨在通过结构化剪枝技术加速大型语言模型(LLM)的预训练过程。该项目基于 MosaicML 的 Composer 包,专门优化和设计用于大规模语言模型的预训练。通过 LLM-Shearing,用户可以有效地将现有的 LLM 剪枝为更小、更高效的模型,从而显著减少计算资源和时间成本。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的环境中已经安装了 PyTorch 和 Flash Attention。您可以通过以下命令进行安装:
pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
pip install flash-attn==1.0.3
2.2 安装 LLM-Shearing
克隆项目仓库并安装所需的依赖包:
git clone https://github.com/princeton-nlp/LLM-Shearing.git
cd LLM-Shearing
pip install -r requirement.txt
pip install -e .
2.3 数据准备
参考 llmshearing/data 目录中的说明,使用 MosaicML 的 Streaming 包准备数据。
2.4 模型准备
将 Hugging Face 的模型权重转换为 Composer 兼容的格式:
HF_MODEL_NAME=meta-llama/Llama-2-7b-hf
OUTPUT_PATH=models/Llama-2-7b-composer/state_dict.pt
mkdir -p $(dirname $OUTPUT_PATH)
python3 -m llmshearing.utils.composer_to_hf save_hf_to_composer $HF_MODEL_NAME $OUTPUT_PATH
2.5 剪枝和继续预训练
使用提供的脚本进行模型剪枝和继续预训练:
# 剪枝
bash llmshearing/scripts/pruning.sh
# 继续预训练
bash llmshearing/scripts/continue_pretraining.sh
3. 应用案例和最佳实践
3.1 案例一:加速 LLaMA 模型预训练
通过 LLM-Shearing,用户可以将 LLaMA-2-7B 模型剪枝为 1.3B 和 2.7B 参数的模型,显著减少预训练所需的计算资源和时间。剪枝后的模型在下游任务和指令调优任务中表现优异,且计算成本仅为从头开始训练的 3%。
3.2 案例二:动态批量加载
LLM-Shearing 还提供了一种动态批量加载算法,可以根据不同域的损失减少率动态调整数据加载比例,从而提高数据利用效率和模型性能。
4. 典型生态项目
4.1 MosaicML Composer
LLM-Shearing 基于 MosaicML 的 Composer 包,Composer 是一个专门为大规模语言模型预训练设计的优化工具包,提供了丰富的功能和优化策略。
4.2 Hugging Face Transformers
LLM-Shearing 支持将剪枝后的模型转换为 Hugging Face 的 Transformers 格式,方便用户进行推理和微调。
4.3 RedPajama 数据集
LLM-Shearing 使用 RedPajama 数据集进行预训练,RedPajama 是一个高质量的开源数据集,适用于各种语言模型的训练。
通过以上步骤,您可以快速上手 LLM-Shearing 项目,并利用其强大的剪枝和预训练功能,加速您的语言模型开发和应用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00