**【开源项目实战指南】LLM-Shearing:加速语言模型预训练通过结构化剪裁**
2024-09-26 04:18:04作者:宣聪麟
LLM-Shearing
Preprint: Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning
1. 目录结构及介绍
LLM-Shearing 是一个基于 ICRL 2024 提交的研究项目,旨在通过结构化剪裁来加速大型语言模型的预训练过程。以下是该仓库的基本目录结构及其功能简介:
icl_eval: 包含用于评估模型性能的数据或脚本。images: 存放项目相关的图像资料。instruction_tuning: 涉及指令微调的相关文件。llmshearing: 核心代码模块,分为几个子文件夹:data: 数据处理的示例数据和脚本。datasets: 自定义数据集,支持动态数据加载。callbacks: 实现了动态加载回调和剪裁回调逻辑。models: 模型文件的实现。scripts: 运行代码所需的脚本集合。utils: 辅助函数,包括模型转换和剪裁测试。
scaling_law: 规模法则相关文件。LICENSE: 开源许可证信息,遵循MIT协议。README.md: 项目介绍和快速入门指南。pruning_logs.zip: 剪裁日志的压缩文件。requirement.txt: 项目依赖列表。setup.py: 安装脚本。
2. 项目的启动文件介绍
主要的启动入口位于 train.py。这个脚本是运行整个代码库的起点,它负责调度训练流程,包括模型初始化、数据加载、训练循环以及潜在的剪裁和后处理逻辑。用户需确保正确配置了所需环境及参数设置后,执行此文件开始模型的训练或剪裁过程。
3. 项目的配置文件介绍
虽然具体的配置文件没有直接提及,但配置主要是通过命令行参数、环境变量或是特定的.py配置文件来完成。用户在操作诸如数据准备、模型设置、训练配置(包括基本训练配置、剪裁配置)时,通常需要修改或指定一些脚本中提到的参数。例如,在进行模型准备和数据准备工作时,可能需要调整requirement.txt列出的软件包版本,以及根据llmshearing/utils下的转换和测试脚本来适配不同模型的配置。
为了具体配置模型训练和剪裁过程,用户应当关注scripts目录下的脚本,如pruning.sh和continue_pretraining.sh,其中可以设定数据路径、模型规模、训练步数等关键参数。这些脚本实际上充当了配置文件的角色,通过编辑它们来定制化训练和剪裁的行为。
此外,虽然未明确提供 .yaml 或 .json 类型的标准配置文件,但项目在实践过程中鼓励用户根据提供的样例脚本来自定义配置项,以适应不同的实验需求和环境设置。用户在实际应用中可能会创建自己的配置变量文件,尤其是当涉及到复杂设置时,以保证灵活性和可重用性。
LLM-Shearing
Preprint: Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134