首页
/ **【开源项目实战指南】LLM-Shearing:加速语言模型预训练通过结构化剪裁**

**【开源项目实战指南】LLM-Shearing:加速语言模型预训练通过结构化剪裁**

2024-09-26 05:38:08作者:宣聪麟

1. 目录结构及介绍

LLM-Shearing 是一个基于 ICRL 2024 提交的研究项目,旨在通过结构化剪裁来加速大型语言模型的预训练过程。以下是该仓库的基本目录结构及其功能简介:

  • icl_eval: 包含用于评估模型性能的数据或脚本。
  • images: 存放项目相关的图像资料。
  • instruction_tuning: 涉及指令微调的相关文件。
  • llmshearing: 核心代码模块,分为几个子文件夹:
    • data: 数据处理的示例数据和脚本。
    • datasets: 自定义数据集,支持动态数据加载。
    • callbacks: 实现了动态加载回调和剪裁回调逻辑。
    • models: 模型文件的实现。
    • scripts: 运行代码所需的脚本集合。
    • utils: 辅助函数,包括模型转换和剪裁测试。
  • scaling_law: 规模法则相关文件。
  • LICENSE: 开源许可证信息,遵循MIT协议。
  • README.md: 项目介绍和快速入门指南。
  • pruning_logs.zip: 剪裁日志的压缩文件。
  • requirement.txt: 项目依赖列表。
  • setup.py: 安装脚本。

2. 项目的启动文件介绍

主要的启动入口位于 train.py。这个脚本是运行整个代码库的起点,它负责调度训练流程,包括模型初始化、数据加载、训练循环以及潜在的剪裁和后处理逻辑。用户需确保正确配置了所需环境及参数设置后,执行此文件开始模型的训练或剪裁过程。

3. 项目的配置文件介绍

虽然具体的配置文件没有直接提及,但配置主要是通过命令行参数、环境变量或是特定的.py配置文件来完成。用户在操作诸如数据准备、模型设置、训练配置(包括基本训练配置、剪裁配置)时,通常需要修改或指定一些脚本中提到的参数。例如,在进行模型准备和数据准备工作时,可能需要调整requirement.txt列出的软件包版本,以及根据llmshearing/utils下的转换和测试脚本来适配不同模型的配置。

为了具体配置模型训练和剪裁过程,用户应当关注scripts目录下的脚本,如pruning.shcontinue_pretraining.sh,其中可以设定数据路径、模型规模、训练步数等关键参数。这些脚本实际上充当了配置文件的角色,通过编辑它们来定制化训练和剪裁的行为。

此外,虽然未明确提供 .yaml.json 类型的标准配置文件,但项目在实践过程中鼓励用户根据提供的样例脚本来自定义配置项,以适应不同的实验需求和环境设置。用户在实际应用中可能会创建自己的配置变量文件,尤其是当涉及到复杂设置时,以保证灵活性和可重用性。

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
603
114
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
55
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
59
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
44
29
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
77
Ffit-framework
面向全场景的 Java 企业级插件化编程框架,支持聚散部署和共享内存,以一切皆可替换为核心理念,旨在为用户提供一种灵活的服务开发范式。
Java
112
13
yolo-onnx-javayolo-onnx-java
Java开发视觉智能识别项目 纯java 调用 yolo onnx 模型 AI 视频 识别 支持 yolov5 yolov8 yolov7 yolov9 yolov10,yolov11,paddle ,obb,seg ,detection,包含 预处理 和 后处理 。java 目标检测 目标识别,可集成 rtsp rtmp,车牌识别,人脸识别,跌倒识别,打架识别,车牌识别,人脸识别 等
Java
7
0
cjoycjoy
a fast,lightweight and joy web framework
Cangjie
10
2
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
7
0
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25