**【开源项目实战指南】LLM-Shearing:加速语言模型预训练通过结构化剪裁**
2024-09-26 05:57:53作者:宣聪麟
1. 目录结构及介绍
LLM-Shearing 是一个基于 ICRL 2024 提交的研究项目,旨在通过结构化剪裁来加速大型语言模型的预训练过程。以下是该仓库的基本目录结构及其功能简介:
icl_eval
: 包含用于评估模型性能的数据或脚本。images
: 存放项目相关的图像资料。instruction_tuning
: 涉及指令微调的相关文件。llmshearing
: 核心代码模块,分为几个子文件夹:data
: 数据处理的示例数据和脚本。datasets
: 自定义数据集,支持动态数据加载。callbacks
: 实现了动态加载回调和剪裁回调逻辑。models
: 模型文件的实现。scripts
: 运行代码所需的脚本集合。utils
: 辅助函数,包括模型转换和剪裁测试。
scaling_law
: 规模法则相关文件。LICENSE
: 开源许可证信息,遵循MIT协议。README.md
: 项目介绍和快速入门指南。pruning_logs.zip
: 剪裁日志的压缩文件。requirement.txt
: 项目依赖列表。setup.py
: 安装脚本。
2. 项目的启动文件介绍
主要的启动入口位于 train.py
。这个脚本是运行整个代码库的起点,它负责调度训练流程,包括模型初始化、数据加载、训练循环以及潜在的剪裁和后处理逻辑。用户需确保正确配置了所需环境及参数设置后,执行此文件开始模型的训练或剪裁过程。
3. 项目的配置文件介绍
虽然具体的配置文件没有直接提及,但配置主要是通过命令行参数、环境变量或是特定的.py
配置文件来完成。用户在操作诸如数据准备、模型设置、训练配置(包括基本训练配置、剪裁配置)时,通常需要修改或指定一些脚本中提到的参数。例如,在进行模型准备和数据准备工作时,可能需要调整requirement.txt
列出的软件包版本,以及根据llmshearing/utils
下的转换和测试脚本来适配不同模型的配置。
为了具体配置模型训练和剪裁过程,用户应当关注scripts
目录下的脚本,如pruning.sh
和continue_pretraining.sh
,其中可以设定数据路径、模型规模、训练步数等关键参数。这些脚本实际上充当了配置文件的角色,通过编辑它们来定制化训练和剪裁的行为。
此外,虽然未明确提供 .yaml
或 .json
类型的标准配置文件,但项目在实践过程中鼓励用户根据提供的样例脚本来自定义配置项,以适应不同的实验需求和环境设置。用户在实际应用中可能会创建自己的配置变量文件,尤其是当涉及到复杂设置时,以保证灵活性和可重用性。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
45
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44