PyTorch-Nested-UNet 项目使用教程
2024-09-19 08:17:27作者:蔡丛锟
1. 项目目录结构及介绍
pytorch-nested-unet/
├── inputs/
│ └── data-science-bowl-2018/
│ ├── stage1_train/
│ │ ├── 00ae65c29/
│ │ │ ├── images/
│ │ │ └── masks/
│ │ ├── ...
│ └── ...
├── models/
├── outputs/
├── .gitignore
├── LICENSE
├── README.md
├── archs.py
├── dataset.py
├── losses.py
├── metrics.py
├── preprocess_dsb2018.py
├── requirements.txt
├── train.py
├── utils.py
└── val.py
目录结构介绍
- inputs/: 存放数据集的目录,例如
data-science-bowl-2018数据集。- data-science-bowl-2018/: 数据集的具体文件夹。
- stage1_train/: 训练数据集。
- 00ae65c29/: 具体样本文件夹。
- images/: 存放图像文件。
- masks/: 存放对应的掩码文件。
- 00ae65c29/: 具体样本文件夹。
- stage1_train/: 训练数据集。
- data-science-bowl-2018/: 数据集的具体文件夹。
- models/: 存放训练好的模型文件。
- outputs/: 存放训练过程中的输出文件,如日志、可视化结果等。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- archs.py: 定义了 UNet++ 的网络架构。
- dataset.py: 数据集加载和预处理脚本。
- losses.py: 定义了损失函数。
- metrics.py: 定义了评估指标。
- preprocess_dsb2018.py: 数据预处理脚本,用于处理
data-science-bowl-2018数据集。 - requirements.txt: 项目依赖库列表。
- train.py: 训练脚本。
- utils.py: 工具函数脚本。
- val.py: 验证脚本。
2. 项目启动文件介绍
train.py
train.py 是项目的启动文件,用于训练模型。以下是该文件的主要功能和参数:
- 功能: 加载数据集、定义模型、设置训练参数、训练模型、保存模型。
- 主要参数:
--dataset: 指定数据集名称,例如dsb2018_96。--arch: 指定模型架构,例如NestedUNet。--loss: 指定损失函数,例如LovaszHingeLoss。--img_ext: 图像文件扩展名,例如jpg。--mask_ext: 掩码文件扩展名,例如png。
使用示例
python train.py --dataset dsb2018_96 --arch NestedUNet --loss LovaszHingeLoss
3. 项目的配置文件介绍
requirements.txt
requirements.txt 文件列出了项目运行所需的 Python 依赖库。可以通过以下命令安装这些依赖:
pip install -r requirements.txt
主要依赖库
- PyTorch: 深度学习框架。
- torchvision: PyTorch 的图像处理库。
- numpy: 数值计算库。
- scikit-image: 图像处理库。
- scipy: 科学计算库。
其他配置
- .gitignore: 配置了 Git 忽略的文件和目录,避免将不必要的文件提交到版本库。
- LICENSE: 项目许可证配置,本项目使用 MIT 许可证。
总结
本教程介绍了 PyTorch-Nested-UNet 项目的目录结构、启动文件和配置文件。通过这些信息,您可以更好地理解和使用该项目进行图像分割任务。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
ops-transformer本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
23
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
227
2.28 K
暂无简介
Dart
527
116
React Native鸿蒙化仓库
JavaScript
214
288
Ascend Extension for PyTorch
Python
69
101
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
102
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197