ANTLR4 C++运行时性能优化:减少ATNConfig内存分配
2025-05-12 10:15:14作者:羿妍玫Ivan
在开发基于ANTLR4的VBA方言解释器时,我们发现当处理大型脚本文件(约10000行代码)时,解析阶段需要超过10秒的时间,而解释阶段由于已经进行了许多优化(如避免使用ParseTree接口)反而耗时很少。通过性能分析,我们发现ANTLR4 C++运行时在处理这类大型文件时会创建约5000万个ATNConfig实例,导致大量内存分配操作。
问题分析
在C++中,频繁的内存分配会严重影响性能。通过添加全局计数器跟踪ATNConfig实例的创建和销毁,我们发现同时存在的ATNConfig实例峰值约为70万个,这意味着绝大多数ATNConfig实例都是短暂使用后被立即销毁的。
这种大量短生命周期对象的创建和销毁导致了以下问题:
- 频繁的内存分配和释放操作消耗了大量CPU时间
- 内存碎片化问题可能加剧
- 缓存局部性差,影响CPU缓存效率
技术背景
ATNConfig是ANTLR4解析过程中的核心数据结构,用于表示解析器在ATN(Augmented Transition Network)中的配置状态。在解析歧义语法时,ANTLR4需要尝试多种可能的解析路径,这会导致大量ATNConfig实例的创建。
VBA语言中存在一些固有歧义,特别是函数调用可以不使用括号的特性,例如:
doubleIt 3 + 4
这个表达式既可以解释为doubleIt(3) + 4,也可以解释为doubleIt(3 + 4)。ANTLR4需要通过尝试多种解析路径来解决这类歧义。
优化方案
我们提出了一个基于对象池的优化方案:
std::list<ATNConfig> atnConfigs;
std::vector<ATNConfig*> freeAtnConfigs;
void release(ATNConfig& atnConfig) {
atnConfig.clear(); // 调用清理方法
freeAtnConfigs.push_back(&atnConfig);
}
ATNConfig& get(...) {
ATNConfig* atnConfig;
if (freeAtnConfigs.empty()) {
atnConfigs.emplace_back(ATNConfig());
atnConfig = &atnConfigs.back();
} else {
atnConfig = freeAtnConfigs.back();
freeAtnConfigs.pop_back();
}
atnConfig->init(...);
return *atnConfig;
}
这个方案的核心思想是:
- 预分配一组ATNConfig对象
- 使用后不立即销毁,而是放入空闲列表
- 需要新对象时优先从空闲列表获取
- 避免频繁的内存分配和释放操作
实施考虑
在实现这一优化时,需要考虑以下技术细节:
- 需要替换现有的
std::shared_ptr使用方式,可能引入std::allocate_shared - 对象池的大小需要合理设置,避免内存浪费
- 需要考虑多线程环境下的安全性
- 需要确保对象在重用前被正确清理
预期收益
通过减少内存分配操作,我们预期可以获得以下改进:
- 解析性能提升10-100倍
- 减少内存碎片
- 提高CPU缓存命中率
- 更稳定的性能表现
结论
ANTLR4 C++运行时的性能优化是一个值得深入研究的领域。通过实现ATNConfig对象池,可以显著减少内存分配操作,从而大幅提升解析性能。这种优化不仅适用于VBA解析场景,也能惠及所有使用ANTLR4 C++运行时的项目。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
403
3.14 K
Ascend Extension for PyTorch
Python
224
250
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219