ANTLR4 C++运行时性能优化:减少ATNConfig内存分配
2025-05-12 13:17:56作者:羿妍玫Ivan
在开发基于ANTLR4的VBA方言解释器时,我们发现当处理大型脚本文件(约10000行代码)时,解析阶段需要超过10秒的时间,而解释阶段由于已经进行了许多优化(如避免使用ParseTree接口)反而耗时很少。通过性能分析,我们发现ANTLR4 C++运行时在处理这类大型文件时会创建约5000万个ATNConfig实例,导致大量内存分配操作。
问题分析
在C++中,频繁的内存分配会严重影响性能。通过添加全局计数器跟踪ATNConfig实例的创建和销毁,我们发现同时存在的ATNConfig实例峰值约为70万个,这意味着绝大多数ATNConfig实例都是短暂使用后被立即销毁的。
这种大量短生命周期对象的创建和销毁导致了以下问题:
- 频繁的内存分配和释放操作消耗了大量CPU时间
- 内存碎片化问题可能加剧
- 缓存局部性差,影响CPU缓存效率
技术背景
ATNConfig是ANTLR4解析过程中的核心数据结构,用于表示解析器在ATN(Augmented Transition Network)中的配置状态。在解析歧义语法时,ANTLR4需要尝试多种可能的解析路径,这会导致大量ATNConfig实例的创建。
VBA语言中存在一些固有歧义,特别是函数调用可以不使用括号的特性,例如:
doubleIt 3 + 4
这个表达式既可以解释为doubleIt(3) + 4,也可以解释为doubleIt(3 + 4)。ANTLR4需要通过尝试多种解析路径来解决这类歧义。
优化方案
我们提出了一个基于对象池的优化方案:
std::list<ATNConfig> atnConfigs;
std::vector<ATNConfig*> freeAtnConfigs;
void release(ATNConfig& atnConfig) {
atnConfig.clear(); // 调用清理方法
freeAtnConfigs.push_back(&atnConfig);
}
ATNConfig& get(...) {
ATNConfig* atnConfig;
if (freeAtnConfigs.empty()) {
atnConfigs.emplace_back(ATNConfig());
atnConfig = &atnConfigs.back();
} else {
atnConfig = freeAtnConfigs.back();
freeAtnConfigs.pop_back();
}
atnConfig->init(...);
return *atnConfig;
}
这个方案的核心思想是:
- 预分配一组ATNConfig对象
- 使用后不立即销毁,而是放入空闲列表
- 需要新对象时优先从空闲列表获取
- 避免频繁的内存分配和释放操作
实施考虑
在实现这一优化时,需要考虑以下技术细节:
- 需要替换现有的
std::shared_ptr使用方式,可能引入std::allocate_shared - 对象池的大小需要合理设置,避免内存浪费
- 需要考虑多线程环境下的安全性
- 需要确保对象在重用前被正确清理
预期收益
通过减少内存分配操作,我们预期可以获得以下改进:
- 解析性能提升10-100倍
- 减少内存碎片
- 提高CPU缓存命中率
- 更稳定的性能表现
结论
ANTLR4 C++运行时的性能优化是一个值得深入研究的领域。通过实现ATNConfig对象池,可以显著减少内存分配操作,从而大幅提升解析性能。这种优化不仅适用于VBA解析场景,也能惠及所有使用ANTLR4 C++运行时的项目。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp课程页面空白问题的技术分析与解决方案3 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析6 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp课程中屏幕放大器知识点优化分析9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp课程视频测验中的Tab键导航问题解析
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 移动端HTML医疗影像DICOM在线浏览解决方案:零足迹医疗图像查看器
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
242
2.38 K
React Native鸿蒙化仓库
JavaScript
216
291
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
353
1.56 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
405
暂无简介
Dart
539
118
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1 K
589
仓颉编程语言运行时与标准库。
Cangjie
123
98
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
591
116