ANTLR4 C++运行时性能优化:减少ATNConfig内存分配
2025-05-12 02:36:51作者:羿妍玫Ivan
在开发基于ANTLR4的VBA方言解释器时,我们发现当处理大型脚本文件(约10000行代码)时,解析阶段需要超过10秒的时间,而解释阶段由于已经进行了许多优化(如避免使用ParseTree接口)反而耗时很少。通过性能分析,我们发现ANTLR4 C++运行时在处理这类大型文件时会创建约5000万个ATNConfig实例,导致大量内存分配操作。
问题分析
在C++中,频繁的内存分配会严重影响性能。通过添加全局计数器跟踪ATNConfig实例的创建和销毁,我们发现同时存在的ATNConfig实例峰值约为70万个,这意味着绝大多数ATNConfig实例都是短暂使用后被立即销毁的。
这种大量短生命周期对象的创建和销毁导致了以下问题:
- 频繁的内存分配和释放操作消耗了大量CPU时间
- 内存碎片化问题可能加剧
- 缓存局部性差,影响CPU缓存效率
技术背景
ATNConfig是ANTLR4解析过程中的核心数据结构,用于表示解析器在ATN(Augmented Transition Network)中的配置状态。在解析歧义语法时,ANTLR4需要尝试多种可能的解析路径,这会导致大量ATNConfig实例的创建。
VBA语言中存在一些固有歧义,特别是函数调用可以不使用括号的特性,例如:
doubleIt 3 + 4
这个表达式既可以解释为doubleIt(3) + 4,也可以解释为doubleIt(3 + 4)。ANTLR4需要通过尝试多种解析路径来解决这类歧义。
优化方案
我们提出了一个基于对象池的优化方案:
std::list<ATNConfig> atnConfigs;
std::vector<ATNConfig*> freeAtnConfigs;
void release(ATNConfig& atnConfig) {
atnConfig.clear(); // 调用清理方法
freeAtnConfigs.push_back(&atnConfig);
}
ATNConfig& get(...) {
ATNConfig* atnConfig;
if (freeAtnConfigs.empty()) {
atnConfigs.emplace_back(ATNConfig());
atnConfig = &atnConfigs.back();
} else {
atnConfig = freeAtnConfigs.back();
freeAtnConfigs.pop_back();
}
atnConfig->init(...);
return *atnConfig;
}
这个方案的核心思想是:
- 预分配一组ATNConfig对象
- 使用后不立即销毁,而是放入空闲列表
- 需要新对象时优先从空闲列表获取
- 避免频繁的内存分配和释放操作
实施考虑
在实现这一优化时,需要考虑以下技术细节:
- 需要替换现有的
std::shared_ptr使用方式,可能引入std::allocate_shared - 对象池的大小需要合理设置,避免内存浪费
- 需要考虑多线程环境下的安全性
- 需要确保对象在重用前被正确清理
预期收益
通过减少内存分配操作,我们预期可以获得以下改进:
- 解析性能提升10-100倍
- 减少内存碎片
- 提高CPU缓存命中率
- 更稳定的性能表现
结论
ANTLR4 C++运行时的性能优化是一个值得深入研究的领域。通过实现ATNConfig对象池,可以显著减少内存分配操作,从而大幅提升解析性能。这种优化不仅适用于VBA解析场景,也能惠及所有使用ANTLR4 C++运行时的项目。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
198
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
426
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694