在nnUNet项目中处理医学影像数据格式转换的技术指南
2025-06-02 05:53:34作者:沈韬淼Beryl
医学影像分析领域,数据格式转换是一项基础但关键的工作。本文将详细介绍如何在nnUNet项目中,将预处理后的医学影像数据从NPZ格式转换为NIfTI格式,并解决转换过程中可能遇到的方向问题。
数据格式转换基础
在nnUNet项目中,预处理后的数据通常以NPZ格式存储,这是一种NumPy的压缩文件格式。而NIfTI(.nii.gz)则是医学影像领域广泛使用的标准格式,支持元数据存储和多维数组。
基本转换方法
使用Python进行格式转换主要依赖两个库:
- NumPy - 用于加载NPZ文件中的数组数据
- nibabel/SimpleITK - 用于将数组数据保存为NIfTI格式
最简单的转换代码如下:
import numpy as np
import nibabel as nib
data = np.load('input.npz')
image_array = data["data"][0]
seg_array = data["seg"][0]
affine = np.eye(4) # 单位矩阵作为仿射变换
nifti_img = nib.Nifti1Image(image_array, affine)
nifti_seg = nib.Nifti1Image(seg_array, affine)
nib.save(nifti_img, 'output_image.nii.gz')
nib.save(nifti_seg, 'output_seg.nii.gz')
处理多模态数据
实际应用中,医学影像往往包含多个模态。例如脑肿瘤分割任务通常包含FLAIR、T1w、t1gd和T2w四种模态。处理这类数据时,需要分别保存每个模态:
modalities = ['FLAIR', 'T1w', 't1gd', 'T2w']
for i, modality in enumerate(modalities):
if i < modalities_data.shape[0]:
nifti_img = nib.Nifti1Image(modalities_data[i], affine)
nib.save(nifti_img, f"{base_name}_{modality}.nii.gz")
解决方向问题
使用nibabel转换时,可能会遇到图像方向不正确的问题。这是因为nibabel对数组轴的排序方式与医学影像标准不同。解决方案是改用SimpleITK:
import SimpleITK as sitk
nifti_img = sitk.GetImageFromArray(modalities_data[i])
sitk.WriteImage(nifti_img, 'output_image.nii.gz')
nifti_seg = sitk.GetImageFromArray(seg_data.astype(np.uint8))
sitk.WriteImage(nifti_seg, 'output_seg.nii.gz')
SimpleITK能更好地保持医学影像的原始方向信息。
2D与3D预处理数据的区别
nnUNet项目中常见的两种预处理数据:
nnUNetData_plans_v2.1_2D_stage0
- 为2D模型训练准备的预处理数据nnUNetData_plans_v2.1_stage0
- 为3D模型训练准备的预处理数据
两者主要区别在于数据维度和切片方式,2D数据更适合处理切片间分辨率差异大的情况,而3D数据能更好地利用体积信息。
最佳实践建议
- 转换前检查原始数据的轴顺序和方向
- 对于分割标签,确保使用正确的数据类型(如np.uint8)
- 保留原始数据的元信息(pkl文件)以获取正确的空间属性
- 批量处理时建立完善的命名和存储体系
- 转换后使用医学影像查看器验证结果
通过以上方法,可以高效准确地在nnUNet项目中完成医学影像数据的格式转换工作,为后续的分析和模型训练奠定基础。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5