在nnUNet项目中处理医学影像数据格式转换的技术指南
2025-06-02 18:34:28作者:沈韬淼Beryl
医学影像分析领域,数据格式转换是一项基础但关键的工作。本文将详细介绍如何在nnUNet项目中,将预处理后的医学影像数据从NPZ格式转换为NIfTI格式,并解决转换过程中可能遇到的方向问题。
数据格式转换基础
在nnUNet项目中,预处理后的数据通常以NPZ格式存储,这是一种NumPy的压缩文件格式。而NIfTI(.nii.gz)则是医学影像领域广泛使用的标准格式,支持元数据存储和多维数组。
基本转换方法
使用Python进行格式转换主要依赖两个库:
- NumPy - 用于加载NPZ文件中的数组数据
- nibabel/SimpleITK - 用于将数组数据保存为NIfTI格式
最简单的转换代码如下:
import numpy as np
import nibabel as nib
data = np.load('input.npz')
image_array = data["data"][0]
seg_array = data["seg"][0]
affine = np.eye(4) # 单位矩阵作为仿射变换
nifti_img = nib.Nifti1Image(image_array, affine)
nifti_seg = nib.Nifti1Image(seg_array, affine)
nib.save(nifti_img, 'output_image.nii.gz')
nib.save(nifti_seg, 'output_seg.nii.gz')
处理多模态数据
实际应用中,医学影像往往包含多个模态。例如脑肿瘤分割任务通常包含FLAIR、T1w、t1gd和T2w四种模态。处理这类数据时,需要分别保存每个模态:
modalities = ['FLAIR', 'T1w', 't1gd', 'T2w']
for i, modality in enumerate(modalities):
if i < modalities_data.shape[0]:
nifti_img = nib.Nifti1Image(modalities_data[i], affine)
nib.save(nifti_img, f"{base_name}_{modality}.nii.gz")
解决方向问题
使用nibabel转换时,可能会遇到图像方向不正确的问题。这是因为nibabel对数组轴的排序方式与医学影像标准不同。解决方案是改用SimpleITK:
import SimpleITK as sitk
nifti_img = sitk.GetImageFromArray(modalities_data[i])
sitk.WriteImage(nifti_img, 'output_image.nii.gz')
nifti_seg = sitk.GetImageFromArray(seg_data.astype(np.uint8))
sitk.WriteImage(nifti_seg, 'output_seg.nii.gz')
SimpleITK能更好地保持医学影像的原始方向信息。
2D与3D预处理数据的区别
nnUNet项目中常见的两种预处理数据:
nnUNetData_plans_v2.1_2D_stage0- 为2D模型训练准备的预处理数据nnUNetData_plans_v2.1_stage0- 为3D模型训练准备的预处理数据
两者主要区别在于数据维度和切片方式,2D数据更适合处理切片间分辨率差异大的情况,而3D数据能更好地利用体积信息。
最佳实践建议
- 转换前检查原始数据的轴顺序和方向
- 对于分割标签,确保使用正确的数据类型(如np.uint8)
- 保留原始数据的元信息(pkl文件)以获取正确的空间属性
- 批量处理时建立完善的命名和存储体系
- 转换后使用医学影像查看器验证结果
通过以上方法,可以高效准确地在nnUNet项目中完成医学影像数据的格式转换工作,为后续的分析和模型训练奠定基础。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137