在nnUNet项目中处理医学影像数据格式转换的技术指南
2025-06-02 03:35:23作者:沈韬淼Beryl
医学影像分析领域,数据格式转换是一项基础但关键的工作。本文将详细介绍如何在nnUNet项目中,将预处理后的医学影像数据从NPZ格式转换为NIfTI格式,并解决转换过程中可能遇到的方向问题。
数据格式转换基础
在nnUNet项目中,预处理后的数据通常以NPZ格式存储,这是一种NumPy的压缩文件格式。而NIfTI(.nii.gz)则是医学影像领域广泛使用的标准格式,支持元数据存储和多维数组。
基本转换方法
使用Python进行格式转换主要依赖两个库:
- NumPy - 用于加载NPZ文件中的数组数据
- nibabel/SimpleITK - 用于将数组数据保存为NIfTI格式
最简单的转换代码如下:
import numpy as np
import nibabel as nib
data = np.load('input.npz')
image_array = data["data"][0]
seg_array = data["seg"][0]
affine = np.eye(4) # 单位矩阵作为仿射变换
nifti_img = nib.Nifti1Image(image_array, affine)
nifti_seg = nib.Nifti1Image(seg_array, affine)
nib.save(nifti_img, 'output_image.nii.gz')
nib.save(nifti_seg, 'output_seg.nii.gz')
处理多模态数据
实际应用中,医学影像往往包含多个模态。例如脑肿瘤分割任务通常包含FLAIR、T1w、t1gd和T2w四种模态。处理这类数据时,需要分别保存每个模态:
modalities = ['FLAIR', 'T1w', 't1gd', 'T2w']
for i, modality in enumerate(modalities):
if i < modalities_data.shape[0]:
nifti_img = nib.Nifti1Image(modalities_data[i], affine)
nib.save(nifti_img, f"{base_name}_{modality}.nii.gz")
解决方向问题
使用nibabel转换时,可能会遇到图像方向不正确的问题。这是因为nibabel对数组轴的排序方式与医学影像标准不同。解决方案是改用SimpleITK:
import SimpleITK as sitk
nifti_img = sitk.GetImageFromArray(modalities_data[i])
sitk.WriteImage(nifti_img, 'output_image.nii.gz')
nifti_seg = sitk.GetImageFromArray(seg_data.astype(np.uint8))
sitk.WriteImage(nifti_seg, 'output_seg.nii.gz')
SimpleITK能更好地保持医学影像的原始方向信息。
2D与3D预处理数据的区别
nnUNet项目中常见的两种预处理数据:
nnUNetData_plans_v2.1_2D_stage0- 为2D模型训练准备的预处理数据nnUNetData_plans_v2.1_stage0- 为3D模型训练准备的预处理数据
两者主要区别在于数据维度和切片方式,2D数据更适合处理切片间分辨率差异大的情况,而3D数据能更好地利用体积信息。
最佳实践建议
- 转换前检查原始数据的轴顺序和方向
- 对于分割标签,确保使用正确的数据类型(如np.uint8)
- 保留原始数据的元信息(pkl文件)以获取正确的空间属性
- 批量处理时建立完善的命名和存储体系
- 转换后使用医学影像查看器验证结果
通过以上方法,可以高效准确地在nnUNet项目中完成医学影像数据的格式转换工作,为后续的分析和模型训练奠定基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Python小说下载神器:一键获取番茄小说完整内容如何用md2pptx快速将Markdown文档转换为专业PPT演示文稿 📊京东评价自动化工具:用Python脚本解放双手的高效助手三步掌握Payload-Dumper-Android:革新性OTA提取工具的核心价值定位终极Obsidian模板配置指南:10个技巧打造高效个人知识库终极指南:5步解锁Rockchip RK3588全部潜力,快速上手Ubuntu 22.04操作系统WebPlotDigitizer 安装配置指南:从图像中提取数据的开源工具终极FDS入门指南:5步掌握火灾动力学模拟技巧高效获取无损音乐:跨平台FLAC音乐下载工具全解析终极指南:5步复现Spring Boot高危漏洞CVE-2016-1000027
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
177
Ascend Extension for PyTorch
Python
340
404
React Native鸿蒙化仓库
JavaScript
303
355
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
暂无简介
Dart
770
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247