在nnUNet项目中处理医学影像数据格式转换的技术指南
2025-06-02 00:28:22作者:沈韬淼Beryl
医学影像分析领域,数据格式转换是一项基础但关键的工作。本文将详细介绍如何在nnUNet项目中,将预处理后的医学影像数据从NPZ格式转换为NIfTI格式,并解决转换过程中可能遇到的方向问题。
数据格式转换基础
在nnUNet项目中,预处理后的数据通常以NPZ格式存储,这是一种NumPy的压缩文件格式。而NIfTI(.nii.gz)则是医学影像领域广泛使用的标准格式,支持元数据存储和多维数组。
基本转换方法
使用Python进行格式转换主要依赖两个库:
- NumPy - 用于加载NPZ文件中的数组数据
- nibabel/SimpleITK - 用于将数组数据保存为NIfTI格式
最简单的转换代码如下:
import numpy as np
import nibabel as nib
data = np.load('input.npz')
image_array = data["data"][0]
seg_array = data["seg"][0]
affine = np.eye(4) # 单位矩阵作为仿射变换
nifti_img = nib.Nifti1Image(image_array, affine)
nifti_seg = nib.Nifti1Image(seg_array, affine)
nib.save(nifti_img, 'output_image.nii.gz')
nib.save(nifti_seg, 'output_seg.nii.gz')
处理多模态数据
实际应用中,医学影像往往包含多个模态。例如脑肿瘤分割任务通常包含FLAIR、T1w、t1gd和T2w四种模态。处理这类数据时,需要分别保存每个模态:
modalities = ['FLAIR', 'T1w', 't1gd', 'T2w']
for i, modality in enumerate(modalities):
if i < modalities_data.shape[0]:
nifti_img = nib.Nifti1Image(modalities_data[i], affine)
nib.save(nifti_img, f"{base_name}_{modality}.nii.gz")
解决方向问题
使用nibabel转换时,可能会遇到图像方向不正确的问题。这是因为nibabel对数组轴的排序方式与医学影像标准不同。解决方案是改用SimpleITK:
import SimpleITK as sitk
nifti_img = sitk.GetImageFromArray(modalities_data[i])
sitk.WriteImage(nifti_img, 'output_image.nii.gz')
nifti_seg = sitk.GetImageFromArray(seg_data.astype(np.uint8))
sitk.WriteImage(nifti_seg, 'output_seg.nii.gz')
SimpleITK能更好地保持医学影像的原始方向信息。
2D与3D预处理数据的区别
nnUNet项目中常见的两种预处理数据:
nnUNetData_plans_v2.1_2D_stage0- 为2D模型训练准备的预处理数据nnUNetData_plans_v2.1_stage0- 为3D模型训练准备的预处理数据
两者主要区别在于数据维度和切片方式,2D数据更适合处理切片间分辨率差异大的情况,而3D数据能更好地利用体积信息。
最佳实践建议
- 转换前检查原始数据的轴顺序和方向
- 对于分割标签,确保使用正确的数据类型(如np.uint8)
- 保留原始数据的元信息(pkl文件)以获取正确的空间属性
- 批量处理时建立完善的命名和存储体系
- 转换后使用医学影像查看器验证结果
通过以上方法,可以高效准确地在nnUNet项目中完成医学影像数据的格式转换工作,为后续的分析和模型训练奠定基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.24 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
617
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258