CodeTalker 开源项目使用指南
2024-09-27 00:05:55作者:郁楠烈Hubert
项目概述
CodeTalker 是一个基于 PyTorch 实现的 CVPR 2023 论文项目,用于实现语音驱动的 3D 面部动画,采用了离散运动先验技术。该工具包能够将音频输入转换成具有细腻表情和精确唇部动作的生动逼真的 3D 面部动画。
目录结构及介绍
以下是 CodeTalker 的基本目录结构及其大致内容:
CodeTalker/
├── main.py # 主运行文件,用于执行训练或测试循环
├── models/ # 包含所有模型定义
│ ├── ...
├── datasets/ # 数据集处理相关代码
│ ├── dataset.py # 数据加载器的实现
│ └── ...
├── scripts/ # 脚本文件,包括训练、测试、演示等
│ ├── train.sh # 训练脚本
│ ├── test.sh # 测试脚本
│ ├── demo.sh # 演示脚本
│ └── render.sh # 视频渲染脚本
├── configs/ # 配置文件夹,每个子目录对应不同的设置
│ ├── vocaset/
│ │ ├── stage1.yaml
│ │ └── stage2.yaml
│ └── BIWI/
│ ├── stage1.yaml
│ └── stage2.yaml
├── utils/ # 工具函数集合
├── metrics/ # 评估指标相关的实现
└── README.md # 项目说明文档
启动文件介绍
main.py
main.py 是项目的入口点,可以根据命令行参数执行训练或推理流程。用户需指定相应的配置文件路径以及是否进行训练或测试操作。这个文件负责初始化模型、数据加载器,并根据配置文件控制整体流程。
配置文件介绍
配置文件主要位于 configs/ 文件夹下,分为不同子目录以对应不同的数据集设置(如 vocaset 和 BIWI)。每个阶段(如 stage1.yaml, stage2.yaml)都有其特定的配置文件,这些文件定义了模型参数、训练细节、数据预处理选项等关键设置。
例如,在 stage1.yaml 中,您可能会看到类似于以下的配置项:
- 模型路径:指定模型权重的保存位置。
- 数据集路径:告诉程序哪里可以找到数据集。
- 批量大小 (
batch_size):一次送入模型的数据量。 - 学习率 (
learning_rate):优化器的学习速率设置。 - 训练轮次 (
num_epochs):模型训练的总轮数。 - 特定于模型的超参数,比如编码器和解码器的设置。
配置文件中的每一个键值对都直接影响到模型的训练过程和最终性能。用户在调整参数时应仔细阅读注释并理解其影响。
为了启动项目,你可能需要遵循以下步骤:
- 确保你的环境满足需求:Python 3.6+、PyTorch 1.9.1、CUDA 11.1 及其他依赖(通过
pip install -r requirements.txt安装)。 - 修改必要的配置文件以符合你的实验需求。
- 运行脚本,例如
sh scripts/train.sh ExperimentName config/vocaset/stage1.yaml vocaset s1来开始训练。
请注意,要完全利用此项目,还需要正确准备数据集,并遵循项目的详细数据准备指导。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
407
3.14 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
673
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
658
React Native鸿蒙化仓库
JavaScript
262
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868