LLaMA-Factory 多机多卡训练中的 Ray 分布式训练问题分析与解决方案
问题背景
在使用 LLaMA-Factory 进行大规模语言模型微调时,研究人员经常需要利用多台设备的计算资源来加速训练过程。Ray 作为一个分布式计算框架,能够有效地协调多台设备上的 GPU 资源进行并行训练。然而,在实际部署过程中,用户可能会遇到一些技术挑战。
典型错误现象
当用户尝试使用 Ray 在 3 台设备(每台配备 1 张 GPU)上进行模型微调时,虽然训练过程看似完成,但系统最终会抛出 AssertionError 错误。错误日志显示,问题出现在 torch.distributed.destroy_process_group() 方法调用时,系统断言进程组(pg)不为 None 的条件失败。
问题根源分析
经过深入调查,发现这个问题源于 Ray 框架内部的一个设计缺陷。具体表现为:
-
重复销毁进程组:系统在训练过程中会两次尝试销毁分布式进程组,第一次是在 LLaMA-Factory 的训练函数内部,第二次是在 Ray 的 on_shutdown 回调中。
-
条件判断不足:Ray 原始的代码仅通过一个布尔标志(destroy_process_group)来决定是否销毁进程组,而没有检查进程组是否已经被销毁或是否仍然存在。
解决方案
针对这个问题,有两种可行的解决路径:
方案一:修改 Ray 源码
在所有节点上修改 Ray 的配置文件:
/root/anaconda3/envs/train/lib/python3.10/site-packages/ray/train/torch/config.py
将原来的条件判断:
if destroy_process_group:
修改为更健壮的检查方式:
if dist.is_initialized():
这种方法直接解决了框架层面的问题,确保只有在分布式环境确实初始化的情况下才会尝试销毁进程组。
方案二:修改 LLaMA-Factory 训练逻辑
另一种思路是调整 LLaMA-Factory 自身的训练流程,避免在训练函数内部过早销毁进程组,将这个职责完全交给 Ray 的 shutdown 回调处理。
多机训练中的检查点管理
在多机多卡训练场景下,检查点的保存位置也是一个需要注意的技术点。目前 Ray 会随机选择一个节点保存训练结果,这可能给后续的模型管理和部署带来不便。
推荐的解决方案包括:
-
使用共享存储:设置一个 NFS 服务器作为主节点,其他工作节点挂载共享文件夹,确保所有检查点都存储在统一位置。
-
定期同步机制:实现一个定期将检查点从各工作节点同步到主节点的机制,保证数据的集中管理。
最佳实践建议
-
环境一致性:确保所有参与训练的节点具有相同的软件环境和依赖版本,避免因环境差异导致的问题。
-
日志监控:密切关注训练过程中的日志输出,及时发现并解决潜在问题。
-
资源预留:在训练大规模模型时,为系统操作预留一定的计算资源,避免因资源耗尽导致训练中断。
-
定期验证:在长时间训练过程中,定期验证模型检查点的完整性和可用性。
总结
分布式训练是加速大规模语言模型微调的有效手段,但在实际部署过程中可能会遇到各种技术挑战。通过深入理解框架的工作原理和仔细排查错误原因,可以有效解决这些问题。本文介绍的 Ray 分布式训练问题及其解决方案,为使用 LLaMA-Factory 进行多机多卡训练的研究人员提供了实用的技术参考。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00