LLaMA-Factory项目中多卡训练异常终止的显存管理问题分析
2025-05-01 15:55:01作者:管翌锬
在深度学习模型训练过程中,特别是使用LLaMA-Factory这类大型语言模型训练框架时,经常会遇到需要中断训练的情况。本文针对单机多卡环境下使用Ctrl+C终止训练后出现的显存和内存未完全释放问题,进行深入的技术分析并提供解决方案。
问题现象
当用户在LLaMA-Factory框架下进行多GPU训练时,如果通过Ctrl+C中断训练过程,经常会出现只有主GPU(通常是第一个GPU)的资源被正确释放,而其他GPU的显存和内存仍然被占用的情况。这种现象会导致后续训练无法正常进行,除非重启系统或手动清理这些残留资源。
技术背景
这种现象的根本原因在于分布式训练环境下的进程管理机制。在多GPU训练中,LLaMA-Factory会启动多个进程,每个GPU对应一个独立的进程。当使用Ctrl+C中断时,默认只会终止主进程,而其他子进程可能仍在运行,导致资源未被释放。
解决方案
针对这一问题,有以下几种解决方案:
-
使用kill命令强制终止: 通过
kill -9命令可以强制终止所有相关进程。具体操作步骤为:ps aux | grep python | awk '{print $2}' | xargs kill -9这条命令会查找所有Python进程并强制终止它们。
-
使用nvidia-smi清理: 如果残留进程与GPU相关,可以使用:
nvidia-smi | grep python | awk '{print $3}' | xargs -n1 kill -9 -
程序内优雅退出: 在训练代码中添加信号处理器,确保所有进程都能收到终止信号:
import signal import sys def signal_handler(sig, frame): # 执行清理操作 sys.exit(0) signal.signal(signal.SIGINT, signal_handler)
预防措施
为了避免频繁遇到这类问题,建议采取以下预防措施:
- 在训练脚本中添加完善的异常处理和资源释放逻辑
- 使用进程管理工具如torch.distributed的destroy_process_group()
- 考虑使用容器化技术,如Docker,可以更彻底地隔离和清理训练环境
总结
多GPU训练环境下的资源管理是一个复杂的问题,特别是在异常终止情况下。理解分布式训练的工作原理和进程管理机制,掌握正确的资源清理方法,对于高效使用LLaMA-Factory等训练框架至关重要。建议用户在开发过程中就考虑好异常处理方案,避免训练中断导致的各种资源问题。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
220
88
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
281
315
React Native鸿蒙化仓库
JavaScript
286
335
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
436
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19